Cuntz-Pimsner algebras from groupoid actions

Valentin Deaconu

University of Nevada, Reno

Groupoidfest

University of Colorado, Boulder

March 25-26, 2017

- We recall the concept of a groupoid action on spaces, on graphs, on *C**-algebras, and on *C**-correspondences.
- Groups act on objects, but groupoids act on fibered objects.
- We consider several *C**-correspondences constructed from groupoid actions and their associated Cuntz-Pimsner algebras.
- There are connections with crossed products, graph *C**-algebras, Doplicher-Roberts algebras and with algebras of self-similar actions.
- We illustrate with some examples.

Groupoid actions on spaces

- In this talk, G denotes a locally compact Hausdorff groupoid with unit space G^0 and range and source maps $r, s : G \to G^0$.
- We say that G acts on a locally compact Hausdorff space X if there is a continuous, open surjection $\pi : X \to G^0$ and a continuous map

 $G * X \to X$, write $(g, x) \mapsto g \cdot x$,

where $G * X = \{(g, x) \in G \times X \mid s(g) = \pi(x)\}$, such that

$$\pi(g \cdot x) = r(g), \ g_2 \cdot (g_1 \cdot x) = (g_2g_1) \cdot x, \ \pi(x) \cdot x = x.$$

- For example, G acts on its unit space G^0 by $g \cdot s(g) = r(g)$. If there is only one orbit, the groupoid is transitive.
- A transitive groupoid is of the form $G^0 \times H \times G^0$ where *H* is the isotropy group.

Groupoid actions on graphs

- Let $E = (E^0, E^1, r, s)$ be a discrete graph.
- We say that the groupoid G with $G^0 = E^0$ acts on E if there is a map $G * E^1 \to E^1$ such that

$$s(g \cdot e) = g \cdot s(e), \quad r(g \cdot e) = g \cdot r(e),$$

where $G * E^1 = \{(g, e) : s(g) = r(e)\}$

• Example. Let *E* be the graph

- The symmetric group S₃ acts on E by g ⋅ a_i = a_{g(i)}, g ∈ S₃ and determines an action on C^{*}(E) = O₃.
- The crossed product O₃ ⋊ S₃ is SME to a graph algebra and to the Doplicher-Roberts algebra of the permutation representation of S₃.

Example

• Let *E* be the graph

- The transitive groupoid G with unit space $E^0 = \{v_1, v_2\}$ and isotropy S_3 acts on E by permutations.
- The action is compatible with the Cuntz relations, so we get an action of G on O₃ ⊕ O₃.
- What is $(\mathcal{O}_3 \oplus \mathcal{O}_3) \rtimes G$?

Groupoid actions on C^* -algebras

- Recall that a $C_0(X)$ -algebra is a C^* -algebra A together with a homomorphism $\theta : C_0(X) \to ZM(A)$ such that $\overline{\theta(C_0(X))A} = A$.
- For each $x \in X$ we can define the fiber A_x as $A/\overline{\theta(I_x)A}$ where

$$I_x = \{ f \in C_0(X) : f(x) = 0 \}.$$

- A C₀(X)-algebra A gives rise to an upper semicontinuous C^{*}-bundle A such that A ≃ Γ₀(X, A).
- We say that G acts on a $C_0(G^0)$ -algebra A if for each $g \in G$ there is an isomorphism $\alpha_g : A_{s(g)} \to A_{r(g)}$ such that

$$\alpha_{g_1g_2} = \alpha_{g_1} \circ \alpha_{g_2}$$
 for $(g_1, g_2) \in G^{(2)}$.

• We also write $g \cdot a$ for $\alpha_g(a)$.

Groupoid actions on C^* -correspondences

- Let \mathcal{H} be a Hilbert module over a $C_0(X)$ -algebra A. Define the fibers $\mathcal{H}_x := \mathcal{H} \otimes_A A_x$ which are Hilbert A_x -modules.
- The set Iso(\mathcal{H}) of \mathbb{C} -linear isomorphisms between fibers becomes a groupoid with unit space *X*.
- Assume moreover that \mathcal{H}_x is a C^* -correspondence over A_x and that G with $G^0 = X$ acts on A.
- An action of G on H is given by a homomorphism ρ : G → Iso(H) where ρ(g) : H_{s(g)} → H_{r(g)} with ρ(g) = I if g ∈ G⁰, such that

$$\langle \rho(g)\xi, \rho(g)\eta \rangle_{r(g)} = g \cdot \langle \xi, \eta \rangle_{s(g)},$$

for $\xi, \eta \in \mathcal{H}_{s(g)}$ and

$$\rho(g)(\xi a) = (\rho(g)\xi)(g \cdot a), \ \ \rho(g)(a\xi) = (g \cdot a)(\rho(g)\xi)$$

for $\xi \in \mathcal{H}_{s(g)}$, $a \in A_{s(g)}$.

Crossed products of C^* -correspondences

- **Theorem.** Let *G* be a groupoid with a Haar system acting on a C^* -correspondence \mathcal{H} over the $C_0(G^0)$ -algebra *A* as above. Then the Katsura ideal $J_{\mathcal{H}}$ is *G*-invariant and we get an action of *G* on $\mathcal{O}_{\mathcal{H}}$, which becomes a $C_0(G^0)$ -algebra.
- Question. Is $\mathcal{O}_{\mathcal{H}} \rtimes G \cong \mathcal{O}_{\mathcal{H} \rtimes G}$?
- Recall that the crossed product $\mathcal{H} \rtimes G = \mathcal{H} \otimes_A (A \rtimes G)$ becomes a C^* -correspondence over $A \rtimes G$ using the operations

$$\begin{split} \langle \xi, \eta \rangle(h) &= \int g^{-1} \cdot \langle \xi(g), \eta(gh) \rangle_{r(g)} d\lambda^{r(h)}(g), \\ (\xi \cdot f)(h) &= \int \xi(g) (g \cdot f(g^{-1}h)) d\lambda^{r(h)}(g), \\ (f \cdot \xi)(h) &= \int f(g) \cdot (g \cdot \xi(g^{-1}h)) d\lambda^{r(h)}(g), \end{split}$$

where $f \in C_c(G, r^*A)$, $\xi \in C_c(G, r^*\mathcal{H})$, and $r^*\mathcal{H} = \mathcal{H} \otimes_A r^*A$.

Exel-Pardo C^* -correspondences

• Let G be a group acting on a graph $E = (E^0, E^1, r, s)$. Then G acts on $A = C_0(E^0)$ and on $\mathcal{H} = \mathcal{H}_E$ by

 $\alpha_g(f)(v) = f(g^{-1}v), \ f \in C_0(E^0), \ \gamma_g(\xi)(e) = \xi(g^{-1}e), \ \xi \in C_c(E^1).$

- A cocycle is a map φ : G × E¹ → G such that φ(g, e) · s(e) = g · s(e) for all (g, e) ∈ G × E¹. Particular case φ(g, e) = g.
- Define an action of *G* on the Hilbert module $\mathcal{H}_E \rtimes_{\gamma} G$ by

$$(V_g\xi)(e,h) = \xi(g^{-1}e,\varphi(g^{-1},e)h), \ \xi \in C_c(E^1 \times G).$$

• Together with the left action of $C_0(E^0)$ on $\mathcal{H}_E \rtimes_{\gamma} G$ given by

$$(\pi(f)\xi)(e,h) = f(r(e))\xi(e,h),$$

we get a covariant representation of $(C_0(E^0), G, \alpha)$.

- From (π, V) we get a map C₀(E⁰) ⋊_α G → L(H_E ⋊_γ G), so H_E ⋊_γ G becomes a C*-correspondence H_E(φ) over C₀(E⁰) ⋊_α G.
- The Cuntz-Pimsner algebra O_{H_E(φ)} is the Exel-Pardo algebra associated to (E, G, φ).

- To realize all Kirchberg algebras as topological graph algebras and to lift automorphisms of *K*-theory groups, Katsura introduced the algebras $\mathcal{O}_{A,B}$ for certain $n \times n$ matrices A, B with integer entries.
- Using generators and relations, Exel and Pardo proved that $\mathcal{O}_{A,B} \cong \mathcal{O}_{\mathcal{H}_E(\varphi)}$, where
- The matrix A is the incidence matrix of a finite graph E and the matrix B defines an action of \mathbb{Z} on E.
- This action fixes the vertices and if the edges from *i* to *j* are labeled $e_{i,j,n}$ for $0 \le n < A_{i,j}$, then $m \cdot e_{i,j,n} = e_{i,j,r}$, where $mB_{i,j} + n = qA_{i,j} + r$ with $0 \le r < A_{i,j}$.
- The cocycle is $\varphi : \mathbb{Z} \times E^1 \to \mathbb{Z}, \ \varphi(m, e_{i,j,n}) = q.$

C^* -correspondences from self-similar actions

• Suppose *E* is a graph with no sources and define $E^* = \bigsqcup_{k \ge 0} E^k$, where E^k is the set of paths of length *k*.

is the set of paths of length k.

- Denote by $T_E = \bigsqcup_{v \in E^0} vE^*$ the union of rooted trees (forest) with $T^0 = E^*, \ T^1 = \{(\mu, \mu e) : \mu \in E^*, e \in E^1, s(\mu) = r(e)\}.$
- The set Iso(E*) of partial isomorphisms vE* → wE* for v, w ∈ E⁰ becomes a groupoid.
- An action of a groupoid G with unit space E^0 on E^* is given by a homomorphism $G \to \text{Iso}(E^*)$.
- The action is *self-similar* if for every g ∈ G and e ∈ s(g)E¹ there exists a unique h ∈ G such that

$$g \cdot (e\mu) = (g \cdot e)(h \cdot \mu)$$
 for all $\mu \in s(e)E^*$.

• We write $h = g|_e$, and the cocycle is given by $\varphi(g, e) = h$.

Example

Let E be the graph a c d w

with forest

 T_E

Example

Define

$$g \cdot a = c, \ g|_a = v, \ g \cdot d = b, \ g|_d = h,$$

 $h \cdot b = a, \ h|_b = v, \ h \cdot c = d, \ h|_c = g$

which determine an action of $G = \langle g, h \rangle$ on $T^0 = E^*$. For example,

$$g \cdot (aa) = ca, \ g \cdot (db) = ba, \ h \cdot (bd) = ad, \ h \cdot (ca) = dc.$$

- The space $\mathcal{M} = \mathcal{H}_E \otimes_{C(E^0)} C^*(G)$ becomes a Hilbert $C^*(G)$ -module with usual inner product and right multiplication.
- The left multiplication is determined by the unitary representation

$$\rho: G \to \mathcal{L}(\mathcal{M}), \ \rho(g)(e \otimes f) = \begin{cases} (g \cdot e) \otimes \delta_{g|_e} f \text{ if } s(g) = r(e) \\ 0 & \text{otherwise,} \end{cases}$$

where $e \in E^1$, $f \in C^*(G)$ and $\delta_g \in C_c(G)$ denotes the point mass.

• Laca, Raeburn, Ramagge and Whittaker studied KMS states on the Toeplitz algebra $\mathcal{T}_{\mathcal{M}}$ and on the Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{M}}$.

The C^* -correspondence of a groupoid representation

- Let G be a groupoid with Haar system λ .
- Given a Hilbert bundle \mathcal{H} over G^0 and a representation $\rho: G \rightarrow Iso(\mathcal{H})$, define operations

$$\langle \xi, \eta \rangle(h) = \int \langle \xi(g^{-1}), \eta(g^{-1}h) \rangle_{s(g)} d\lambda^{r(h)}(g)$$

$$\begin{split} &(\xi \cdot f)(h) = \int \xi(g) f(g^{-1}h) d\lambda^{r(h)}(g), \\ &f \cdot \xi(h) = \int f(g) \rho(g) \xi(g) d\lambda^{r(h)}(g), \end{split}$$

for $f \in C_c(G)$ and $\xi, \eta \in C_c(G, r^*\mathcal{H})$.

 The completion of C_c(G, r*H) becomes a C*-correspondence M_ρ over C*(G), where the left action of C_c(G) extends to a *-homomorphsim π_ρ: C*(G) → L(M_ρ).

The compact group case

- Theorem. If G is a compact group and ρ : G → U(H) is a unitary representation with H separable, then O_{M_ρ} is SME to a graph C*-algebra.
 If π_ρ : C*(G) → L(H) is injective, then the graph has no sources.
- **Proof** (sketch). The C*-algebra C*(G) decomposes as a direct sum of matrix algebras A_i with units p_i, indexed by the discrete set \hat{G} .
- Let *E* be the graph with vertex space $E^0 = \hat{G}$ and with edges determined by the A_j - $A_i C^*$ -correspondences $p_j \mathcal{M}_{\rho} p_i$.
- $\mathcal{O}_{\mathcal{M}_{\rho}}$ is isomorphic to the *C**-algebra of a graph of *C**-correspondences in which we assign the algebra A_i at the vertex v_i and the minimal components of $p_j \mathcal{M}_{\rho} p_i$ for each edge joining v_i with v_j .
- By construction, this C^* -algebra is SME to $C^*(E)$.

- E. Bédos, S. Kaliszewski, J. Quigg, *On Exel-Pardo algebras*, arXiv preprint 1512.07302v3
- V. Deaconu, *Group actions on graphs and C*-coorespondences*, to appear in Houston J. Math.
- V. Deaconu, A. Kumjian, D. Pask and A. Sims, *Graphs of C*-correspondences and Fell bundles*, Indiana Univ. Math. J. **59** (2010) 1687–1735.
- R. Exel, E. Pardo, *Self-Similar graphs: a unified treatment of Katsura and Nekrashevych algebras*, arXiv preprint 1409.1107 v2.
- G. Hao, C.-K. Ng, Crossed products of C*-correspondences by amenable group actions, J. Math. Anal. Appl. 345 (2008), no. 2, 702–707.
- M. Laca, I. Raeburn, J. Ramagge, M. Whittaker, Equilibrium states on operator algebras associated to self-similar actions of groupoids on graphs, arXiv preprint 1610.00343v1.
- A. Kumjian, D. Pask, I. Raeburn, J. Renault, Graphs, Groupoids and Cuntz-Krieger algebras, J. of Funct. Anal. 144 (1997) No. 2, 505–541.
- V. Nekrashevych, C*-algebras and self-similar groups, J. Reine Angew. Math 630(2009), 59–123.