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Tracial states

If Ais a C*-algebra then a tracial state on A is a state such that
od(xy) = ¢(yx) for all x,y € A. We are interested in

(1) how to define tracial states on a given C*-algebra A
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Tracial states

If Ais a C*-algebra then a tracial state on A is a state such that
d(xy) = ¢(yx) for all x,y € A. We are interested in

(1) how to define tracial states on a given C*-algebra A

(2) how to be sure that our methods capture all possible tracial
states on A.
In particular, we are interested in the case of groupoid and graph

C*-algebras.
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Tracial states: inclusions + conditional

expectations

Our approach to studying tracial states assumes the following initial
data:
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Our approach to studying tracial states assumes the following initial
data:

(1) an inclusion B C A of a C*-subalgebra (usually but not
necessarily abelian) which contains an approximate identity for
A
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Tracial states: inclusions + conditional

expectations

Our approach to studying tracial states assumes the following initial
data:

(1) an inclusion B C A of a C*-subalgebra (usually but not
necessarily abelian) which contains an approximate identity for
A

(2) a conditional expectation E : A — B (a completely positive
linear bimodule map fixing B)
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Tracial states: state extensions

If : B — C is a state on B, then ¢ o E is a state extension to A.
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Tracial states: state extensions

If : B — C is a state on B, then ¢ o E is a state extension to A.

For which tracial states ¢ € T(B) is the extension ¢ o E a tracial
state on A?
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Tracial states: state extensions

If : B — C is a state on B, then ¢ o E is a state extension to A.

For which tracial states ¢ € T(B) is the extension ¢ o E a tracial
state on A? If S is the set of such states, is the map S’ — T(A)
given by ¢ — ¢ o [E a surjection?
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Groupoid example

Example

Let G be an étale groupoid and let A= C*(G) be its C*-algebra.
The C*-subalgebra B = Cy(G(®) is the range of a conditional
expectation E : A — B given by f — f|z0 for f € C(G). Any state
¢ on B is tracial and is represented by a measure p.
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Example

Let G be an étale groupoid and let A= C*(G) be its C*-algebra.
The C*-subalgebra B = Cy(G(®) is the range of a conditional
expectation E : A — B given by f — f|z0 for f € C(G). Any state
¢ on B is tracial and is represented by a measure pu. It is fairly
well-known that

¢ o [E tracial <> p invariant
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Groupoid example

Example

Let G be an étale groupoid and let A= C*(G) be its C*-algebra.
The C*-subalgebra B = Cy(G(®) is the range of a conditional
expectation E : A — B given by f — f|z0 for f € C(G). Any state
¢ on B is tracial and is represented by a measure pu. It is fairly
well-known that

¢ o [E tracial <» p invariant

where 1 is invariant if for every open set U C G(® and open
bisection B C G, we have u(r(B) N U) = u(BUB™!). (Generalizes
notion of invariant measure for a group action.)
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Invariant states

Definition
Normalizers: N(B) = {n € A: nBn*Un*Bn C B}.
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Normalizers: N(B) = {n€ A: nBn*Un*Bn C B}. If ¢ € S(B) and
n € N(B), then ¢ is called n-invariant if
¢(nbn*) = ¢(n*nb) = ¢(bn*n) for all b € B.
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Invariant states

Definition

Normalizers: N(B) = {n€ A: nBn*Un*Bn C B}. If ¢ € S(B) and
n € N(B), then ¢ is called n-invariant if
¢(nbn*) = ¢(n*nb) = ¢(bn*n) for all b € B.

In the groupoid C*-algebra example, the most familiar normalizers
are functions n € C.(G) which are supported on bisections.
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Invariant states
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Normalizers: N(B) = {n€ A: nBn*Un*Bn C B}. If ¢ € S(B) and
n € N(B), then ¢ is called n-invariant if
¢(nbn*) = ¢(n*nb) = ¢(bn*n) for all b € B.

In the groupoid C*-algebra example, the most familiar normalizers
are functions n € C.(G) which are supported on bisections.

If 7 € T(A) is a tracial state, then ¢ = 7| is a fully invariant
(tracial) state on B.
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Invariant states

Definition

Normalizers: N(B) = {n€ A: nBn*Un*Bn C B}. If ¢ € S(B) and
n € N(B), then ¢ is called n-invariant if
¢(nbn*) = ¢(n*nb) = ¢(bn*n) for all b € B.

In the groupoid C*-algebra example, the most familiar normalizers
are functions n € C.(G) which are supported on bisections.

If 7 € T(A) is a tracial state, then ¢ = 7| is a fully invariant
(tracial) state on B.

We found that under fairly mild assumptions this example can be
reversed.
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Normalization of conditional expectations

Definition

Let E : A — B be a conditional expectation. We say that E is
normalized by n € N(B) if E(nan*) = nE(a)n* for all a € A. (Similar
for No € N(B).)

In the cases that we care about, the relevant conditional expectations
will be normalized by a set of normalizers that generate A.
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Invariant states, ctd.

Suppose that ¢ € T(B). Then ¢ o E is centralized by n if and only if
¢ Is n-invariant.
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Invariant states, ctd.

Lemma

Suppose that ¢ € T(B). Then ¢ o E is centralized by n if and only if
¢ Is n-invariant.

4

Theorem (C., Nagy)

Suppose that E : A — B is normalized by ¥ C N(B) and ¢ is a
> -invariant tracial state on B. Then ¢ o [E is a tracial state when
restricted to C*(X U B) C A.
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¢ Is n-invariant.

4

Theorem (C., Nagy)

Suppose that E : A — B is normalized by ¥ C N(B) and ¢ is a
> -invariant tracial state on B. Then ¢ o [E is a tracial state when

restricted to C*(X U B) C A. If ¥ C B generates A, we obtain a
tracial state on A.
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Invariant states, ctd.

Lemma

Suppose that ¢ € T(B). Then ¢ o E is centralized by n if and only if
¢ Is n-invariant.

4

Theorem (C., Nagy)

Suppose that E : A — B is normalized by ¥ C N(B) and ¢ is a
> -invariant tracial state on B. Then ¢ o [E is a tracial state when
restricted to C*(X U B) C A. If ¥ C B generates A, we obtain a
tracial state on A.

If we take A= C(G) and X to be the set of all “elementary
normalizers”, this gives a proof of the previous fact about tracial
states on groupoid C*-algebras.
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Graph C*-algebras

If E = (E® E', r,s)is a directed graph, then there is a universal
C*-algebra C*(E) generated by a family {s., p, }ecer vepo such that
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(1) the p, are mutually orthogonal projections;
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Graph C*-algebras

If E = (E® E', r,s)is a directed graph, then there is a universal
C*-algebra C*(E) generated by a family {s., p, }ecer vepo such that

(1) the p, are mutually orthogonal projections;

(2) the s, are partial isometries with mutually orthogonal range
projections;

(3) sise = ps(e) for all e € EY;

(4) sest < prey, and if r=1(v) is finite and non-empty (i.e. v is a
regular vertex), then p, = Zr(e):v SeSy.
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Graph C*-algebras

If E = (E® E', r,s)is a directed graph, then there is a universal
C*-algebra C*(E) generated by a family {s., p, }ecer vepo such that

(1) the p, are mutually orthogonal projections;

(2) the s, are partial isometries with mutually orthogonal range
projections;

(3) sise = ps(e) for all e € EY;

(4) sest < prey, and if r=1(v) is finite and non-empty (i.e. v is a
regular vertex), then p, = Zr(e):v SeSy.

For a directed path a = e; ... e,, we denote the associated partial
isometry Se, ...Se, by s,.
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Graph C*-algebras

If E = (E® E', r,s)is a directed graph, then there is a universal
C*-algebra C*(E) generated by a family {s., p, }ecer vepo such that

(1) the p, are mutually orthogonal projections;

(2) the s, are partial isometries with mutually orthogonal range
projections;

(3) sise = ps(e) for all e € EY;

(4) sest < prey, and if r=1(v) is finite and non-empty (i.e. v is a
regular vertex), then p, = Zr(e):v SeSy.

For a directed path a = e; ... e,, we denote the associated partial

isometry S, ...Se, by s,.Elements of the form SaS3 for a, 5 € E*

(finite path space), span the graph C*-algebra.
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The abelian core

Definition
A cycleis a path A =e;...¢e, in E with r(e;) = s(e,).
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The abelian core

Definition

A cycleis a path A =e;...e, in E with r(e;) = s(e,). An entry to A
is a path f;...f, with r(fi) = r(ex) and f; # e, for some k.
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The abelian core

Definition

A cycleis a path A =e;...e, in E with r(e;) = s(e,). An entry to A
is a path f;...f, with r(fi) = r(ex) and f; # e, for some k. The
abelian core M(E) is the C*-subalgebra of C*(E) generated by
GM(E) = {saSi}a U {sasrss : A a cycle without entry}.
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The abelian core
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A cycleis a path A =e;...e, in E with r(e;) = s(e,). An entry to A
is a path f; ... f, with r(f;) = r(ex) and f; # e, for some k. The
abelian core M(E) is the C*-subalgebra of C*(E) generated by
GMm(E) = {sasi}o U {sasrsy : A a cycle without entry}.

It is shown in [5] that there is a conditional expectation E from
C*(E) onto M(E).
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is a path f; ... f, with r(f;) = r(ex) and f; # e, for some k. The
abelian core M(E) is the C*-subalgebra of C*(E) generated by
GMm(E) = {sasi}o U {sasrsy : A a cycle without entry}.

It is shown in [5] that there is a conditional expectation E from
C*(E) onto M(E). So we obtain tracial states on C*(E) by
extending states on M(E) via E.
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The abelian core

Definition

A cycleis a path A =e;...e, in E with r(e;) = s(e,). An entry to A
is a path f; ... f, with r(f;) = r(ex) and f; # e, for some k. The
abelian core M(E) is the C*-subalgebra of C*(E) generated by
GMm(E) = {sasi}o U {sasrsy : A a cycle without entry}.

It is shown in [5] that there is a conditional expectation E from
C*(E) onto M(E). So we obtain tracial states on C*(E) by
extending states on M(E) via E. In groupoid language, M(E)
corresponds to C*(Int Iso (Gg)) C C*(Gg) = C*(E).
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Tracial states on graph C*-algebras

A graph trace on E is a function g : E® — [0, 00) such that
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Tracial states on graph C*-algebras

Definition

A graph trace on E is a function g : E® — [0, 00) such that

(1) if v is a vertex and {ey,...,e,} C ri(v), then
>.718(s(e) < g(v), and
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Tracial states on graph C*-algebras

Definition

A graph trace on E is a function g : E® — [0, 00) such that
(1) if vis a vertex and {ey,...,e,} C r*(v), then

> i18(s(e) < g(v), and
(2) if v is a regular vertex, then g(v) = 3_,.,_, &(s(e)).
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Tracial states on graph C*-algebras

Definition
A graph trace on E is a function g : E® — [0, 00) such that
(1) if vis a vertex and {ey,...,e,} C r*(v), then
> i1 8(s(er)) < g(v), and
(2) if v is a regular vertex, then g(v) = 3_,.,_, &(s(e)).

(3) X2, &(v)=1
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Tracial states on graph C*-algebras

A graph trace on E is a function g : E® — [0, 00) such that
(1) if vis a vertex and {ey,...,e,} C r*(v), then

> i18(s(e) < g(v), and
(2) if v is a regular vertex, then g(v) = 3_,.,_, &(s(e)).

(3) X2, &(v)=1

4

Example

If 7 is a tracial state on C*(E) then g.(v) = 7(p,) defines a graph
trace on E.
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Tracial states on graph C*-algebras

A graph trace on E is a function g : E® — [0, 00) such that
(1) if vis a vertex and {ey,...,e,} C r*(v), then

> i18(s(e) < g(v), and
(2) if v is a regular vertex, then g(v) = 3_,.,_, &(s(e)).

(3) ¥, e(v) =1 )
Example

If 7 is a tracial state on C*(E) then g.(v) = 7(p,) defines a graph
trace on E. )

Tomforde in [6] showed that the map 7 — g, is surjective onto the
set of graph traces, using ordered K-theory.
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Entrances and tight graphs

If v is the source of an entrance to a cycle, then g(v) = 0 for any
graph trace g.
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Entrances and tight graphs

If v is the source of an entrance to a cycle, then g(v) = 0 for any
graph trace g.

If we set H to be the set of all vertices as in the lemma, H is B
hereditary (r(e) € H implies s(e) € H). Taking the saturation H one
can check that g(w) = 0 for w € H and g any graph trace.

We call the quotient graph E \ﬁ the tight subgraph Egh, and

there is a canonical surjective *-homomorphism
ptight . C*(E) — C*(E\ H)
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Entrances and tight graphs

If v is the source of an entrance to a cycle, then g(v) = 0 for any
graph trace g.

If we set H to be the set of all vertices as in the lemma, H is B
hereditary (r(e) € H implies s(e) € H). Taking the saturation H one
can check that g(w) = 0 for w € H and g any graph trace.

We call the quotient graph E \ﬁ the tight subgraph Egh, and
there is a canonical surjective x-homomorphism

pright © C*(E) — C*(E \ H). Every tracial state on C*(E) factors
through p, giving an isomorphism T(C*(E)) = T(C*(Etight))-
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Cyclically tagged graph traces

The cyclic support of a graph trace g is the set supp© g of vertices v
with g(v) > 0 that lie on cycles without entry. A cyclically tagged
graph trace is a pair (g, i), where g is a normalized graph trace and
 : supp® g — Prob(T). It is consistent if whenever v and w are on
the same cycle, then p(v) = pu(w). The space of consistent cyclically
tagged graph traces is denoted by T “T(E).

Example

If 7 is a tracial state on C*(E), we obtain the graph trace g, as
before, and the cyclic tagging p = p, is defined for v € supp® g

k = T(sf) S =r =v minima
[ #dn = T35 ) =) = v | minimal
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Invariant states and cyclically tagged graph traces

Theorem (C., Nagy)

If (g, 1) € TLCT(E), there is a state ¢,y on M(E) which satisfies
Peun(Sass) = 8(s5(a)) and (g ) (sasisn) = &(s(a)) [y 2“dps(e).
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Invariant states and cyclically tagged graph traces

Theorem (C., Nagy)

If (g, 1) € TLCT(E), there is a state ¢,y on M(E) which satisfies
Pgm)(Sasa) = £(s(0)) and g ) (sasysy) = g(s(a)) [ 24dps(ar).
Furthermore ¢ ,.) is se-invariant for each e € E' and the
composition ¢g.,y © E is a tracial state on C*(E).
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Invariant states and cyclically tagged graph traces

Theorem (C., Nagy)

If (g, 1) € TLCT(E), there is a state ¢,y on M(E) which satisfies
Pgm)(Sasa) = £(s(0)) and g ) (sasysy) = g(s(a)) [ 24dps(ar).
Furthermore ¢ .y is Se-invariant for each e € E' and the
composition ¢g.,y © E is a tracial state on C*(E).

Idea of proof

Divide the Gelfand spectrum  of M(E) into two parts. (One part
will carry the graph trace and the other will carry the tagging.) Then
define the state on M(E) by choosing a measure on Q that is
suitably invariant. O]
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Parametrizing T(C*(E))

Theorem (C., Nagy )
(1) for any E, the map

TfCT(Etight) > (g? /’L) = T(g,u) o ptight € T( C*(E))

(where 7(g.,) € T(C*(Eignt)) corresponds to (g, 1)) is an
isomorphism.
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Parametrizing T(C*(E))

Theorem (C., Nagy )
(1) for any E, the map

TfCT(Etight) > (g? /’L) = T(g,u) o ptight € T( C*(E))

(where 7(g.,) € T(C*(Eignt)) corresponds to (g, 1)) is an
isomorphism.

(2) if E is tight, then T — (g, pt) is an isomorphism from
T(C*(E)) onto T{LCT(E).
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Parametrizing T(C*(E))

Theorem (C., Nagy )
(1) for any E, the map

TfCT(Etight) > (g? /’L) = T(g,u) o ptight € T( C*(E))

(where 7(g.,) € T(C*(Eignt)) corresponds to (g, 1)) is an
isomorphism.

(2) if E is tight, then T — (g, pt) is an isomorphism from
T(C*(E)) onto T{LCT(E).

The key fact used in the proof is that M(Eight) C C*(Eiight) has the
extension property and so every tracial state on C*(E;ght) factors
through the abelian core.
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When is 7 — g, injective

Tomforde noted that if E satisfies condition (K), then the map
T — g, is injective. However this is not necessary.
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When is 7 — g, injective

Tomforde noted that if E satisfies condition (K), then the map
T — g, is injective. However this is not necessary.

Definition

Two (finite) paths A and u are incomparable if neither one contains
the other as initial prefix. A vertex v is essentially left infinite if there
is an infinite set {\x} of finite paths that are pairwise incomparable
and such that s(\x) = v for all k.

Theorem (C., Nagy )

For a directed graph E the following are equivalent:
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Two (finite) paths A and u are incomparable if neither one contains
the other as initial prefix. A vertex v is essentially left infinite if there
is an infinite set {\x} of finite paths that are pairwise incomparable
and such that s(\x) = v for all k.

Theorem (C., Nagy )

For a directed graph E the following are equivalent:
(i) the map T — g, is injective;
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When is 7 — g, injective

Tomforde noted that if E satisfies condition (K), then the map
T — g, is injective. However this is not necessary.

Definition

Two (finite) paths A and u are incomparable if neither one contains
the other as initial prefix. A vertex v is essentially left infinite if there
is an infinite set {\x} of finite paths that are pairwise incomparable
and such that s(\x) = v for all k.

Theorem (C., Nagy )

For a directed graph E the following are equivalent:
(i) the map T — g, is injective;
(i) the source of each cycle in E is essentially left infinite.
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the other as initial prefix. A vertex v is essentially left infinite if there
is an infinite set {\x} of finite paths that are pairwise incomparable
and such that s(\x) = v for all k.

Theorem (C., Nagy )

For a directed graph E the following are equivalent:
(i) the map T — g, is injective;
(i) the source of each cycle in E is essentially left infinite.
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Future directions

(1) Would like to extend the notion of tightening to all groupoid
C*-algebras (k-graphs are already tricky).
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Future directions

(1) Would like to extend the notion of tightening to all groupoid
C*-algebras (k-graphs are already tricky).

(2) Would like to understand how to obtain tracial states on general
groupoid C*-algebras in relation to isotropy groups ([4] already
has something like this but not quite what we want)
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