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Tracial states

If A is a C ∗-algebra then a tracial state on A is a state such that
φ(xy) = φ(yx) for all x , y ∈ A. We are interested in

(1) how to define tracial states on a given C ∗-algebra A

(2) how to be sure that our methods capture all possible tracial
states on A.

In particular, we are interested in the case of groupoid and graph
C ∗-algebras.
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Tracial states: inclusions + conditional

expectations

Our approach to studying tracial states assumes the following initial
data:

(1) an inclusion B ⊂ A of a C ∗-subalgebra (usually but not
necessarily abelian) which contains an approximate identity for
A;

(2) a conditional expectation E : A→ B (a completely positive
linear bimodule map fixing B)
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Tracial states: state extensions

If φ : B → C is a state on B , then φ ◦ E is a state extension to A.

Question

For which tracial states φ ∈ T (B) is the extension φ ◦ E a tracial
state on A? If S ′ is the set of such states, is the map S ′ → T (A)
given by φ 7→ φ ◦ E a surjection?
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Groupoid example

Example

Let G be an étale groupoid and let A = C ∗(G ) be its C ∗-algebra.
The C ∗-subalgebra B = C0(G (0)) is the range of a conditional
expectation E : A→ B given by f 7→ f |G (0) for f ∈ Cc(G ). Any state
φ on B is tracial and is represented by a measure µ.

It is fairly
well-known that

φ ◦ E tracial ↔ µ invariant

where µ is invariant if for every open set U ⊂ G (0) and open
bisection B ⊂ G , we have µ(r(B) ∩ U) = µ(BUB−1). (Generalizes
notion of invariant measure for a group action.)
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Invariant states

Definition

Normalizers: N(B) = {n ∈ A : nBn∗ ∪ n∗Bn ⊂ B}.

If φ ∈ S(B) and
n ∈ N(B), then φ is called n-invariant if
φ(nbn∗) = φ(n∗nb) = φ(bn∗n) for all b ∈ B .

In the groupoid C ∗-algebra example, the most familiar normalizers
are functions n ∈ Cc(G ) which are supported on bisections.

Example

If τ ∈ T (A) is a tracial state, then φ = τ |B is a fully invariant
(tracial) state on B .

We found that under fairly mild assumptions this example can be
reversed.

Danny Crytser (Kansas State) Traces arising from regular inclusions May 19, 2017 6 / 19



Invariant states

Definition

Normalizers: N(B) = {n ∈ A : nBn∗ ∪ n∗Bn ⊂ B}. If φ ∈ S(B) and
n ∈ N(B), then φ is called n-invariant if
φ(nbn∗) = φ(n∗nb) = φ(bn∗n) for all b ∈ B .

In the groupoid C ∗-algebra example, the most familiar normalizers
are functions n ∈ Cc(G ) which are supported on bisections.

Example

If τ ∈ T (A) is a tracial state, then φ = τ |B is a fully invariant
(tracial) state on B .

We found that under fairly mild assumptions this example can be
reversed.

Danny Crytser (Kansas State) Traces arising from regular inclusions May 19, 2017 6 / 19



Invariant states

Definition

Normalizers: N(B) = {n ∈ A : nBn∗ ∪ n∗Bn ⊂ B}. If φ ∈ S(B) and
n ∈ N(B), then φ is called n-invariant if
φ(nbn∗) = φ(n∗nb) = φ(bn∗n) for all b ∈ B .

In the groupoid C ∗-algebra example, the most familiar normalizers
are functions n ∈ Cc(G ) which are supported on bisections.

Example

If τ ∈ T (A) is a tracial state, then φ = τ |B is a fully invariant
(tracial) state on B .

We found that under fairly mild assumptions this example can be
reversed.

Danny Crytser (Kansas State) Traces arising from regular inclusions May 19, 2017 6 / 19



Invariant states

Definition

Normalizers: N(B) = {n ∈ A : nBn∗ ∪ n∗Bn ⊂ B}. If φ ∈ S(B) and
n ∈ N(B), then φ is called n-invariant if
φ(nbn∗) = φ(n∗nb) = φ(bn∗n) for all b ∈ B .

In the groupoid C ∗-algebra example, the most familiar normalizers
are functions n ∈ Cc(G ) which are supported on bisections.

Example

If τ ∈ T (A) is a tracial state, then φ = τ |B is a fully invariant
(tracial) state on B .

We found that under fairly mild assumptions this example can be
reversed.

Danny Crytser (Kansas State) Traces arising from regular inclusions May 19, 2017 6 / 19



Invariant states

Definition

Normalizers: N(B) = {n ∈ A : nBn∗ ∪ n∗Bn ⊂ B}. If φ ∈ S(B) and
n ∈ N(B), then φ is called n-invariant if
φ(nbn∗) = φ(n∗nb) = φ(bn∗n) for all b ∈ B .

In the groupoid C ∗-algebra example, the most familiar normalizers
are functions n ∈ Cc(G ) which are supported on bisections.

Example

If τ ∈ T (A) is a tracial state, then φ = τ |B is a fully invariant
(tracial) state on B .

We found that under fairly mild assumptions this example can be
reversed.

Danny Crytser (Kansas State) Traces arising from regular inclusions May 19, 2017 6 / 19



Normalization of conditional expectations

Definition

Let E : A→ B be a conditional expectation. We say that E is
normalized by n ∈ N(B) if E(nan∗) = nE(a)n∗ for all a ∈ A. (Similar
for N0 ⊂ N(B).)

In the cases that we care about, the relevant conditional expectations
will be normalized by a set of normalizers that generate A.
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Invariant states, ctd.

Lemma

Suppose that φ ∈ T (B). Then φ ◦ E is centralized by n if and only if
φ is n-invariant.

Theorem (C., Nagy)

Suppose that E : A→ B is normalized by Σ ⊂ N(B) and φ is a
Σ-invariant tracial state on B. Then φ ◦ E is a tracial state when
restricted to C ∗(Σ ∪ B) ⊂ A. If Σ ⊂ B generates A, we obtain a
tracial state on A.

If we take A = C ∗r (G ) and Σ to be the set of all “elementary
normalizers”, this gives a proof of the previous fact about tracial
states on groupoid C ∗-algebras.
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Graph C ∗-algebras

If E = (E 0,E 1, r , s) is a directed graph, then there is a universal
C ∗-algebra C ∗(E ) generated by a family {se , pv}e∈E1,v∈E0 such that

(1) the pv are mutually orthogonal projections;

(2) the se are partial isometries with mutually orthogonal range
projections;

(3) s∗e se = ps(e) for all e ∈ E 1;

(4) ses
∗
e ≤ pr(e), and if r−1(v) is finite and non-empty (i.e. v is a

regular vertex), then pv =
∑

r(e)=v ses
∗
e .

For a directed path α = e1 . . . en, we denote the associated partial
isometry se1 . . . sen by sα.Elements of the form sαs

∗
β, for α, β ∈ E ∗

(finite path space), span the graph C ∗-algebra.

Danny Crytser (Kansas State) Traces arising from regular inclusions May 19, 2017 9 / 19



Graph C ∗-algebras

If E = (E 0,E 1, r , s) is a directed graph, then there is a universal
C ∗-algebra C ∗(E ) generated by a family {se , pv}e∈E1,v∈E0 such that

(1) the pv are mutually orthogonal projections;

(2) the se are partial isometries with mutually orthogonal range
projections;

(3) s∗e se = ps(e) for all e ∈ E 1;

(4) ses
∗
e ≤ pr(e), and if r−1(v) is finite and non-empty (i.e. v is a

regular vertex), then pv =
∑

r(e)=v ses
∗
e .

For a directed path α = e1 . . . en, we denote the associated partial
isometry se1 . . . sen by sα.Elements of the form sαs

∗
β, for α, β ∈ E ∗

(finite path space), span the graph C ∗-algebra.

Danny Crytser (Kansas State) Traces arising from regular inclusions May 19, 2017 9 / 19



Graph C ∗-algebras

If E = (E 0,E 1, r , s) is a directed graph, then there is a universal
C ∗-algebra C ∗(E ) generated by a family {se , pv}e∈E1,v∈E0 such that

(1) the pv are mutually orthogonal projections;

(2) the se are partial isometries with mutually orthogonal range
projections;

(3) s∗e se = ps(e) for all e ∈ E 1;

(4) ses
∗
e ≤ pr(e), and if r−1(v) is finite and non-empty (i.e. v is a

regular vertex), then pv =
∑

r(e)=v ses
∗
e .

For a directed path α = e1 . . . en, we denote the associated partial
isometry se1 . . . sen by sα.Elements of the form sαs

∗
β, for α, β ∈ E ∗

(finite path space), span the graph C ∗-algebra.

Danny Crytser (Kansas State) Traces arising from regular inclusions May 19, 2017 9 / 19



Graph C ∗-algebras

If E = (E 0,E 1, r , s) is a directed graph, then there is a universal
C ∗-algebra C ∗(E ) generated by a family {se , pv}e∈E1,v∈E0 such that

(1) the pv are mutually orthogonal projections;

(2) the se are partial isometries with mutually orthogonal range
projections;

(3) s∗e se = ps(e) for all e ∈ E 1;

(4) ses
∗
e ≤ pr(e), and if r−1(v) is finite and non-empty (i.e. v is a

regular vertex), then pv =
∑

r(e)=v ses
∗
e .

For a directed path α = e1 . . . en, we denote the associated partial
isometry se1 . . . sen by sα.Elements of the form sαs

∗
β, for α, β ∈ E ∗

(finite path space), span the graph C ∗-algebra.

Danny Crytser (Kansas State) Traces arising from regular inclusions May 19, 2017 9 / 19



Graph C ∗-algebras

If E = (E 0,E 1, r , s) is a directed graph, then there is a universal
C ∗-algebra C ∗(E ) generated by a family {se , pv}e∈E1,v∈E0 such that

(1) the pv are mutually orthogonal projections;

(2) the se are partial isometries with mutually orthogonal range
projections;

(3) s∗e se = ps(e) for all e ∈ E 1;

(4) ses
∗
e ≤ pr(e), and if r−1(v) is finite and non-empty (i.e. v is a

regular vertex), then pv =
∑

r(e)=v ses
∗
e .

For a directed path α = e1 . . . en, we denote the associated partial
isometry se1 . . . sen by sα.Elements of the form sαs

∗
β, for α, β ∈ E ∗

(finite path space), span the graph C ∗-algebra.

Danny Crytser (Kansas State) Traces arising from regular inclusions May 19, 2017 9 / 19



Graph C ∗-algebras

If E = (E 0,E 1, r , s) is a directed graph, then there is a universal
C ∗-algebra C ∗(E ) generated by a family {se , pv}e∈E1,v∈E0 such that

(1) the pv are mutually orthogonal projections;

(2) the se are partial isometries with mutually orthogonal range
projections;

(3) s∗e se = ps(e) for all e ∈ E 1;

(4) ses
∗
e ≤ pr(e), and if r−1(v) is finite and non-empty (i.e. v is a

regular vertex), then pv =
∑

r(e)=v ses
∗
e .

For a directed path α = e1 . . . en, we denote the associated partial
isometry se1 . . . sen by sα.

Elements of the form sαs
∗
β, for α, β ∈ E ∗

(finite path space), span the graph C ∗-algebra.

Danny Crytser (Kansas State) Traces arising from regular inclusions May 19, 2017 9 / 19



Graph C ∗-algebras

If E = (E 0,E 1, r , s) is a directed graph, then there is a universal
C ∗-algebra C ∗(E ) generated by a family {se , pv}e∈E1,v∈E0 such that

(1) the pv are mutually orthogonal projections;

(2) the se are partial isometries with mutually orthogonal range
projections;

(3) s∗e se = ps(e) for all e ∈ E 1;

(4) ses
∗
e ≤ pr(e), and if r−1(v) is finite and non-empty (i.e. v is a

regular vertex), then pv =
∑

r(e)=v ses
∗
e .

For a directed path α = e1 . . . en, we denote the associated partial
isometry se1 . . . sen by sα.Elements of the form sαs

∗
β, for α, β ∈ E ∗

(finite path space), span the graph C ∗-algebra.

Danny Crytser (Kansas State) Traces arising from regular inclusions May 19, 2017 9 / 19



The abelian core

Definition

A cycle is a path λ = e1 . . . en in E with r(e1) = s(en).

An entry to λ
is a path f1 . . . fk with r(f1) = r(ek) and f1 6= ek for some k . The
abelian core M(E ) is the C ∗-subalgebra of C ∗(E ) generated by
GM(E ) = {sαs∗α}α ∪ {sαsλs∗α : λ a cycle without entry}.

It is shown in [5] that there is a conditional expectation E from
C ∗(E ) onto M(E ). So we obtain tracial states on C ∗(E ) by
extending states on M(E ) via E. In groupoid language, M(E )
corresponds to C ∗(Int Iso (GE )) ⊂ C ∗(GE ) ∼= C ∗(E ).
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Tracial states on graph C ∗-algebras

Definition

A graph trace on E is a function g : E 0 → [0,∞) such that

(1) if v is a vertex and {e1, . . . , en} ⊂ r−1(v), then∑n
i=1 g(s(ei)) ≤ g(v), and

(2) if v is a regular vertex, then g(v) =
∑

r(e)=v g(s(e)).

(3)
∑

v g(v) = 1

Example

If τ is a tracial state on C ∗(E ) then gτ (v) = τ(pv ) defines a graph
trace on E .

Tomforde in [6] showed that the map τ 7→ gτ is surjective onto the
set of graph traces, using ordered K -theory.
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Entrances and tight graphs

Lemma

If v is the source of an entrance to a cycle, then g(v) = 0 for any
graph trace g.

If we set H to be the set of all vertices as in the lemma, H is
hereditary (r(e) ∈ H implies s(e) ∈ H). Taking the saturation H one
can check that g(w) = 0 for w ∈ H and g any graph trace.

We call the quotient graph E \ H the tight subgraph Etight, and
there is a canonical surjective ∗-homomorphism
ρtight : C ∗(E )→ C ∗(E \ H). Every tracial state on C ∗(E ) factors
through ρ, giving an isomorphism T (C ∗(E )) ∼= T (C ∗(Etight)).
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Cyclically tagged graph traces

Definition

The cyclic support of a graph trace g is the set suppc g of vertices v
with g(v) > 0 that lie on cycles without entry. A cyclically tagged
graph trace is a pair (g , µ), where g is a normalized graph trace and
µ : suppc g → Prob(T). It is consistent if whenever v and w are on
the same cycle, then µ(v) = µ(w). The space of consistent cyclically
tagged graph traces is denoted by TCCT

1 (E ).

Example

If τ is a tracial state on C ∗(E ), we obtain the graph trace gτ as
before, and the cyclic tagging µ = µτ is defined for v ∈ suppc g∫

T
zkdµv =

τ(skλ)

τ(pv )
s(λ) = r(λ) = v |λ| minimal.
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Invariant states and cyclically tagged graph traces

Theorem (C., Nagy)

If (g , µ) ∈ TCCT
1 (E ), there is a state φ(g ,µ) on M(E ) which satisfies

φ(g ,µ)(sαs
∗
α) = g(s(α)) and φ(g ,µ)(sαs

k
λs
∗
α) = g(s(α))

∫
T z

kdµs(α).

Furthermore φ(g ,µ) is se-invariant for each e ∈ E 1 and the
composition φ(g ,µ) ◦ E is a tracial state on C ∗(E ).

Idea of proof

Divide the Gelfand spectrum Ω of M(E ) into two parts. (One part
will carry the graph trace and the other will carry the tagging.) Then
define the state on M(E ) by choosing a measure on Ω that is
suitably invariant.
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Parametrizing T (C ∗(E ))

Theorem (C., Nagy )

(1) for any E , the map

TCCT
1 (Etight) 3 (g , µ) 7→ τ(g ,µ) ◦ ρtight ∈ T (C ∗(E ))

(where τ(g ,µ) ∈ T (C ∗(Etight)) corresponds to (g , µ)) is an
isomorphism.

(2) if E is tight, then τ 7→ (gτ , µτ ) is an isomorphism from
T (C ∗(E )) onto TCCT

1 (E ).

The key fact used in the proof is that M(Etight) ⊂ C ∗(Etight) has the
extension property and so every tracial state on C ∗(Etight) factors
through the abelian core.
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When is τ 7→ gτ injective

Tomforde noted that if E satisfies condition (K), then the map
τ 7→ gτ is injective. However this is not necessary.

Definition

Two (finite) paths λ and µ are incomparable if neither one contains
the other as initial prefix. A vertex v is essentially left infinite if there
is an infinite set {λk} of finite paths that are pairwise incomparable
and such that s(λk) = v for all k .

Theorem (C., Nagy )

For a directed graph E the following are equivalent:

(i) the map τ 7→ gτ is injective;

(ii) the source of each cycle in E is essentially left infinite.
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Future directions

(1) Would like to extend the notion of tightening to all groupoid
C ∗-algebras (k-graphs are already tricky).

(2) Would like to understand how to obtain tracial states on general
groupoid C ∗-algebras in relation to isotropy groups ([4] already
has something like this but not quite what we want)
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Thank you!
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