Traces arising from regular inclusions

Danny Crytser (with Gabriel Nagy)

Kansas State

May 19, 2017

・ロト ・ 日 ・ ・ 日 ・ ・ ・

 $\exists \rightarrow$

2

If A is a C*-algebra then a *tracial state* on A is a state such that $\phi(xy) = \phi(yx)$ for all $x, y \in A$. We are interested in (1) how to define tracial states on a given C*-algebra A If A is a C*-algebra then a *tracial state* on A is a state such that φ(xy) = φ(yx) for all x, y ∈ A. We are interested in
(1) how to define tracial states on a given C*-algebra A
(2) how to be sure that our methods capture all possible tracial states on A.

If A is a C*-algebra then a *tracial state* on A is a state such that $\phi(xy) = \phi(yx)$ for all $x, y \in A$. We are interested in

- (1) how to define tracial states on a given C^* -algebra A
- (2) how to be sure that our methods capture all possible tracial states on A.

In particular, we are interested in the case of groupoid and graph C^* -algebras.

Tracial states: inclusions + conditional expectations

Our approach to studying tracial states assumes the following initial data:

Tracial states: inclusions + conditional expectations

Our approach to studying tracial states assumes the following initial data:

(1) an inclusion $B \subset A$ of a C^* -subalgebra (usually but not necessarily abelian) which contains an approximate identity for A;

Tracial states: inclusions + conditional expectations

Our approach to studying tracial states assumes the following initial data:

- (1) an inclusion $B \subset A$ of a C^* -subalgebra (usually but not necessarily abelian) which contains an approximate identity for A;
- (2) a conditional expectation $\mathbb{E} : A \to B$ (a completely positive linear bimodule map fixing B)

If $\phi : B \to \mathbb{C}$ is a state on *B*, then $\phi \circ \mathbb{E}$ is a state extension to *A*.

If $\phi: B \to \mathbb{C}$ is a state on B, then $\phi \circ \mathbb{E}$ is a state extension to A.

Question

For which tracial states $\phi \in T(B)$ is the extension $\phi \circ \mathbb{E}$ a *tracial state* on *A*?

If $\phi: B \to \mathbb{C}$ is a state on *B*, then $\phi \circ \mathbb{E}$ is a state extension to *A*.

Question

For which tracial states $\phi \in T(B)$ is the extension $\phi \circ \mathbb{E}$ a *tracial* state on A? If S' is the set of such states, is the map $S' \to T(A)$ given by $\phi \mapsto \phi \circ \mathbb{E}$ a surjection?

Example

Let G be an étale groupoid and let $A = C^*(G)$ be its C*-algebra. The C*-subalgebra $B = C_0(G^{(0)})$ is the range of a conditional expectation $\mathbb{E} : A \to B$ given by $f \mapsto f|_{G^{(0)}}$ for $f \in C_c(G)$. Any state ϕ on B is tracial and is represented by a measure μ .

Example

Let G be an étale groupoid and let $A = C^*(G)$ be its C^* -algebra. The C^* -subalgebra $B = C_0(G^{(0)})$ is the range of a conditional expectation $\mathbb{E} : A \to B$ given by $f \mapsto f|_{G^{(0)}}$ for $f \in C_c(G)$. Any state ϕ on B is tracial and is represented by a measure μ . It is fairly well-known that

 $\phi \circ \mathbb{E} \text{ tracial } \leftrightarrow \mu \text{ invariant}$

Example

Let G be an étale groupoid and let $A = C^*(G)$ be its C*-algebra. The C*-subalgebra $B = C_0(G^{(0)})$ is the range of a conditional expectation $\mathbb{E} : A \to B$ given by $f \mapsto f|_{G^{(0)}}$ for $f \in C_c(G)$. Any state ϕ on B is tracial and is represented by a measure μ . It is fairly well-known that

 $\phi \circ \mathbb{E} \text{ tracial } \leftrightarrow \mu \text{ invariant}$

where μ is invariant if for every open set $U \subset G^{(0)}$ and open bisection $B \subset G$, we have $\mu(r(B) \cap U) = \mu(BUB^{-1})$. (Generalizes notion of invariant measure for a group action.)

イロト イポト イヨト イヨト

Invariant states

Definition

Normalizers: $N(B) = \{n \in A : nBn^* \cup n^*Bn \subset B\}.$

Danny Crytser (Kansas State) Traces arising from reg

Traces arising from regular inclusions

.

Normalizers: $N(B) = \{n \in A : nBn^* \cup n^*Bn \subset B\}$. If $\phi \in S(B)$ and $n \in N(B)$, then ϕ is called *n*-invariant if $\phi(nbn^*) = \phi(n^*nb) = \phi(bn^*n)$ for all $b \in B$.

Normalizers: $N(B) = \{n \in A : nBn^* \cup n^*Bn \subset B\}$. If $\phi \in S(B)$ and $n \in N(B)$, then ϕ is called *n*-invariant if $\phi(nbn^*) = \phi(n^*nb) = \phi(bn^*n)$ for all $b \in B$.

In the groupoid C^* -algebra example, the most familiar normalizers are functions $n \in C_c(G)$ which are supported on bisections.

Normalizers: $N(B) = \{n \in A : nBn^* \cup n^*Bn \subset B\}$. If $\phi \in S(B)$ and $n \in N(B)$, then ϕ is called *n*-invariant if $\phi(nbn^*) = \phi(n^*nb) = \phi(bn^*n)$ for all $b \in B$.

In the groupoid C^* -algebra example, the most familiar normalizers are functions $n \in C_c(G)$ which are supported on bisections.

Example

If $\tau \in T(A)$ is a tracial state, then $\phi = \tau|_B$ is a fully invariant (tracial) state on B.

Normalizers: $N(B) = \{n \in A : nBn^* \cup n^*Bn \subset B\}$. If $\phi \in S(B)$ and $n \in N(B)$, then ϕ is called *n*-invariant if $\phi(nbn^*) = \phi(n^*nb) = \phi(bn^*n)$ for all $b \in B$.

In the groupoid C^* -algebra example, the most familiar normalizers are functions $n \in C_c(G)$ which are supported on bisections.

Example

If $\tau \in T(A)$ is a tracial state, then $\phi = \tau|_B$ is a fully invariant (tracial) state on B.

We found that under fairly mild assumptions this example can be reversed.

- 4 同 1 - 4 日 1 - 4 日

Let $\mathbb{E} : A \to B$ be a conditional expectation. We say that \mathbb{E} is *normalized* by $n \in N(B)$ if $\mathbb{E}(nan^*) = n\mathbb{E}(a)n^*$ for all $a \in A$. (Similar for $N_0 \subset N(B)$.)

In the cases that we care about, the relevant conditional expectations will be normalized by a set of normalizers that generate A.

Suppose that $\phi \in T(B)$. Then $\phi \circ \mathbb{E}$ is centralized by n if and only if ϕ is n-invariant.

Suppose that $\phi \in T(B)$. Then $\phi \circ \mathbb{E}$ is centralized by n if and only if ϕ is n-invariant.

Theorem (C., Nagy)

Suppose that $\mathbb{E} : A \to B$ is normalized by $\Sigma \subset N(B)$ and ϕ is a Σ -invariant tracial state on B. Then $\phi \circ \mathbb{E}$ is a tracial state when restricted to $C^*(\Sigma \cup B) \subset A$.

Suppose that $\phi \in T(B)$. Then $\phi \circ \mathbb{E}$ is centralized by n if and only if ϕ is n-invariant.

Theorem (C., Nagy)

Suppose that $\mathbb{E} : A \to B$ is normalized by $\Sigma \subset N(B)$ and ϕ is a Σ -invariant tracial state on B. Then $\phi \circ \mathbb{E}$ is a tracial state when restricted to $C^*(\Sigma \cup B) \subset A$. If $\Sigma \subset B$ generates A, we obtain a tracial state on A.

Suppose that $\phi \in T(B)$. Then $\phi \circ \mathbb{E}$ is centralized by n if and only if ϕ is n-invariant.

Theorem (C., Nagy)

Suppose that $\mathbb{E} : A \to B$ is normalized by $\Sigma \subset N(B)$ and ϕ is a Σ -invariant tracial state on B. Then $\phi \circ \mathbb{E}$ is a tracial state when restricted to $C^*(\Sigma \cup B) \subset A$. If $\Sigma \subset B$ generates A, we obtain a tracial state on A.

If we take $A = C_r^*(G)$ and Σ to be the set of all "elementary normalizers", this gives a proof of the previous fact about tracial states on groupoid C^* -algebras.

イロト イポト イヨト イヨ

If $E = (E^0, E^1, r, s)$ is a directed graph, then there is a universal C^* -algebra $C^*(E)$ generated by a family $\{s_e, p_v\}_{e \in E^1, v \in E^0}$ such that (1) the p_v are mutually orthogonal projections;

- (1) the p_v are mutually orthogonal projections;
- (2) the s_e are partial isometries with mutually orthogonal range projections;

- (1) the p_v are mutually orthogonal projections;
- (2) the s_e are partial isometries with mutually orthogonal range projections;

(3)
$$s_e^* s_e = p_{s(e)}$$
 for all $e \in E^1$;

- (1) the p_v are mutually orthogonal projections;
- (2) the s_e are partial isometries with mutually orthogonal range projections;

(3)
$$s_e^* s_e = p_{s(e)}$$
 for all $e \in E^1$;

(4) $s_e s_e^* \leq p_{r(e)}$, and if $r^{-1}(v)$ is finite and non-empty (i.e. v is a regular vertex), then $p_v = \sum_{r(e)=v} s_e s_e^*$.

- (1) the p_v are mutually orthogonal projections;
- (2) the s_e are partial isometries with mutually orthogonal range projections;

(3)
$$s_e^* s_e = p_{s(e)}$$
 for all $e \in E^1$;

(4) $s_e s_e^* \leq p_{r(e)}$, and if $r^{-1}(v)$ is finite and non-empty (i.e. v is a regular vertex), then $p_v = \sum_{r(e)=v} s_e s_e^*$.

For a directed path $\alpha = e_1 \dots e_n$, we denote the associated partial isometry $s_{e_1} \dots s_{e_n}$ by s_{α} .

- (1) the p_v are mutually orthogonal projections;
- (2) the s_e are partial isometries with mutually orthogonal range projections;

(3)
$$s_e^* s_e = p_{s(e)}$$
 for all $e \in E^1$;

(4) $s_e s_e^* \leq p_{r(e)}$, and if $r^{-1}(v)$ is finite and non-empty (i.e. v is a regular vertex), then $p_v = \sum_{r(e)=v} s_e s_e^*$.

For a directed path $\alpha = e_1 \dots e_n$, we denote the associated partial isometry $s_{e_1} \dots s_{e_n}$ by s_{α} . Elements of the form $s_{\alpha}s_{\beta}^*$, for $\alpha, \beta \in E^*$ (finite path space), span the graph C^* -algebra.

・ 同 ト ・ ヨ ト ・ ヨ ト

A cycle is a path $\lambda = e_1 \dots e_n$ in E with $r(e_1) = s(e_n)$.

A cycle is a path $\lambda = e_1 \dots e_n$ in E with $r(e_1) = s(e_n)$. An entry to λ is a path $f_1 \dots f_k$ with $r(f_1) = r(e_k)$ and $f_1 \neq e_k$ for some k.

A cycle is a path $\lambda = e_1 \dots e_n$ in E with $r(e_1) = s(e_n)$. An entry to λ is a path $f_1 \dots f_k$ with $r(f_1) = r(e_k)$ and $f_1 \neq e_k$ for some k. The abelian core $\mathcal{M}(E)$ is the C^* -subalgebra of $C^*(E)$ generated by $\mathcal{G}_{\mathcal{M}}(E) = \{s_\alpha s_\alpha^*\}_\alpha \cup \{s_\alpha s_\lambda s_\alpha^* : \lambda \text{ a cycle without entry}\}.$

A cycle is a path $\lambda = e_1 \dots e_n$ in E with $r(e_1) = s(e_n)$. An entry to λ is a path $f_1 \dots f_k$ with $r(f_1) = r(e_k)$ and $f_1 \neq e_k$ for some k. The abelian core $\mathcal{M}(E)$ is the C^* -subalgebra of $C^*(E)$ generated by $\mathcal{G}_{\mathcal{M}}(E) = \{s_\alpha s_\alpha^*\}_\alpha \cup \{s_\alpha s_\lambda s_\alpha^* : \lambda \text{ a cycle without entry}\}.$

It is shown in [5] that there is a conditional expectation \mathbb{E} from $C^*(E)$ onto $\mathcal{M}(E)$.

A cycle is a path $\lambda = e_1 \dots e_n$ in E with $r(e_1) = s(e_n)$. An entry to λ is a path $f_1 \dots f_k$ with $r(f_1) = r(e_k)$ and $f_1 \neq e_k$ for some k. The abelian core $\mathcal{M}(E)$ is the C^* -subalgebra of $C^*(E)$ generated by $\mathcal{G}_{\mathcal{M}}(E) = \{s_\alpha s_\alpha^*\}_\alpha \cup \{s_\alpha s_\lambda s_\alpha^* : \lambda \text{ a cycle without entry}\}.$

It is shown in [5] that there is a conditional expectation \mathbb{E} from $C^*(E)$ onto $\mathcal{M}(E)$. So we obtain tracial states on $C^*(E)$ by extending states on $\mathcal{M}(E)$ via \mathbb{E} .

A cycle is a path $\lambda = e_1 \dots e_n$ in E with $r(e_1) = s(e_n)$. An entry to λ is a path $f_1 \dots f_k$ with $r(f_1) = r(e_k)$ and $f_1 \neq e_k$ for some k. The abelian core $\mathcal{M}(E)$ is the C^* -subalgebra of $C^*(E)$ generated by $\mathcal{G}_{\mathcal{M}}(E) = \{s_\alpha s_\alpha^*\}_\alpha \cup \{s_\alpha s_\lambda s_\alpha^* : \lambda \text{ a cycle without entry}\}.$

It is shown in [5] that there is a conditional expectation \mathbb{E} from $C^*(E)$ onto $\mathcal{M}(E)$. So we obtain tracial states on $C^*(E)$ by extending states on $\mathcal{M}(E)$ via \mathbb{E} . In groupoid language, $\mathcal{M}(E)$ corresponds to $C^*(\text{Int Iso } (G_E)) \subset C^*(G_E) \cong C^*(E)$.

イロト イポト イヨト イヨト

Definition

A graph trace on E is a function $g: E^0 \to [0,\infty)$ such that

Definition

A graph trace on E is a function $g: E^0 \to [0, \infty)$ such that (1) if v is a vertex and $\{e_1, \ldots, e_n\} \subset r^{-1}(v)$, then

 $\sum_{i=1}^{n} g(s(e_i)) \leq g(v), \text{ and}$

Definition

A graph trace on E is a function $g : E^0 \to [0, \infty)$ such that (1) if v is a vertex and $\{e_1, \ldots, e_n\} \subset r^{-1}(v)$, then $\sum_{i=1}^n g(s(e_i)) \leq g(v)$, and (2) if v is a regular vertex, then $g(v) = \sum_{r(e)=v} g(s(e))$.

Definition

A graph trace on E is a function $g : E^0 \to [0, \infty)$ such that (1) if v is a vertex and $\{e_1, \ldots, e_n\} \subset r^{-1}(v)$, then $\sum_{i=1}^n g(s(e_i)) \leq g(v)$, and (2) if v is a regular vertex, then $g(v) = \sum_{r(e)=v} g(s(e))$. (3) $\sum_v g(v) = 1$

Definition

A graph trace on E is a function $g : E^0 \to [0, \infty)$ such that (1) if v is a vertex and $\{e_1, \ldots, e_n\} \subset r^{-1}(v)$, then $\sum_{i=1}^n g(s(e_i)) \leq g(v)$, and (2) if v is a regular vertex, then $g(v) = \sum_{r(e)=v} g(s(e))$. (3) $\sum_v g(v) = 1$

Example

If τ is a tracial state on $C^*(E)$ then $g_{\tau}(v) = \tau(p_v)$ defines a graph trace on E.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

A graph trace on E is a function $g : E^0 \to [0, \infty)$ such that (1) if v is a vertex and $\{e_1, \ldots, e_n\} \subset r^{-1}(v)$, then $\sum_{i=1}^n g(s(e_i)) \leq g(v)$, and (2) if v is a regular vertex, then $g(v) = \sum_{r(e)=v} g(s(e))$. (3) $\sum_v g(v) = 1$

Example

If τ is a tracial state on $C^*(E)$ then $g_{\tau}(v) = \tau(p_v)$ defines a graph trace on E.

Tomforde in [6] showed that the map $\tau \mapsto g_{\tau}$ is surjective onto the set of graph traces, using ordered *K*-theory.

イロト イポト イヨト イヨト

If v is the source of an entrance to a cycle, then g(v) = 0 for any graph trace g.

If v is the source of an entrance to a cycle, then g(v) = 0 for any graph trace g.

If we set H to be the set of all vertices as in the lemma, H is hereditary $(r(e) \in H \text{ implies } s(e) \in H)$. Taking the saturation \overline{H} one can check that g(w) = 0 for $w \in \overline{H}$ and g any graph trace.

We call the quotient graph $E \setminus \overline{H}$ the **tight subgraph** E_{tight} , and there is a canonical surjective *-homomorphism $\rho_{\text{tight}} : C^*(E) \to C^*(E \setminus \overline{H}).$

If v is the source of an entrance to a cycle, then g(v) = 0 for any graph trace g.

If we set H to be the set of all vertices as in the lemma, H is hereditary $(r(e) \in H \text{ implies } s(e) \in H)$. Taking the saturation \overline{H} one can check that g(w) = 0 for $w \in \overline{H}$ and g any graph trace.

We call the quotient graph $E \setminus \overline{H}$ the **tight subgraph** E_{tight} , and there is a canonical surjective *-homomorphism $\rho_{\text{tight}} : C^*(E) \to C^*(E \setminus \overline{H})$. Every tracial state on $C^*(E)$ factors through ρ , giving an isomorphism $T(C^*(E)) \cong T(C^*(E_{\text{tight}}))$.

- 4 同下 4 国下 4 国下

Cyclically tagged graph traces

Definition

The cyclic support of a graph trace g is the set supp^c g of vertices v with g(v) > 0 that lie on cycles without entry. A cyclically tagged graph trace is a pair (g, μ) , where g is a normalized graph trace and $\mu : \operatorname{supp}^{c} g \to \operatorname{Prob}(\mathbb{T})$. It is consistent if whenever v and w are on the same cycle, then $\mu(v) = \mu(w)$. The space of consistent cyclically tagged graph traces is denoted by $T_1^{CCT}(E)$.

Example

If τ is a tracial state on $C^*(E)$, we obtain the graph trace g_{τ} as before, and the cyclic tagging $\mu = \mu_{\tau}$ is defined for $v \in \operatorname{supp}^c g$

$$\int_{\mathbb{T}} z^k d\mu_v = \frac{\tau(s_\lambda^k)}{\tau(p_v)} \qquad s(\lambda) = r(\lambda) = v \quad |\lambda| \text{ minimal.}$$

Theorem (C., Nagy)

If $(g, \mu) \in T_1^{\mathsf{CCT}}(E)$, there is a state $\phi_{(g,\mu)}$ on $\mathcal{M}(E)$ which satisfies $\phi_{(g,\mu)}(s_\alpha s^*_\alpha) = g(s(\alpha))$ and $\phi_{(g,\mu)}(s_\alpha s^k_\lambda s^*_\alpha) = g(s(\alpha)) \int_{\mathbb{T}} z^k d\mu_s(\alpha)$.

Theorem (C., Nagy)

If $(g, \mu) \in T_1^{CCT}(E)$, there is a state $\phi_{(g,\mu)}$ on $\mathcal{M}(E)$ which satisfies $\phi_{(g,\mu)}(s_\alpha s^*_\alpha) = g(s(\alpha))$ and $\phi_{(g,\mu)}(s_\alpha s^k_\lambda s^*_\alpha) = g(s(\alpha)) \int_{\mathbb{T}} z^k d\mu_s(\alpha)$. Furthermore $\phi_{(g,\mu)}$ is s_e -invariant for each $e \in E^1$ and the composition $\phi_{(g,\mu)} \circ \mathbb{E}$ is a tracial state on $C^*(E)$.

Theorem (C., Nagy)

If $(g, \mu) \in T_1^{CCT}(E)$, there is a state $\phi_{(g,\mu)}$ on $\mathcal{M}(E)$ which satisfies $\phi_{(g,\mu)}(s_\alpha s^*_\alpha) = g(s(\alpha))$ and $\phi_{(g,\mu)}(s_\alpha s^k_\lambda s^*_\alpha) = g(s(\alpha)) \int_{\mathbb{T}} z^k d\mu_s(\alpha)$. Furthermore $\phi_{(g,\mu)}$ is s_e -invariant for each $e \in E^1$ and the composition $\phi_{(g,\mu)} \circ \mathbb{E}$ is a tracial state on $C^*(E)$.

Idea of proof

Divide the Gelfand spectrum Ω of $\mathcal{M}(E)$ into two parts. (One part will carry the graph trace and the other will carry the tagging.) Then define the state on $\mathcal{M}(E)$ by choosing a measure on Ω that is suitably invariant.

イロト 不得下 イヨト イヨト

Parametrizing $T(C^*(E))$

Theorem (C., Nagy)

Danny Crytser (Kansa<u>s State)</u>

(1) for any E, the map

$$T_1^{\mathsf{CCT}}(E_{\mathsf{tight}})
i (g, \mu) \mapsto \tau_{(g, \mu)} \circ \rho_{\mathsf{tight}} \in T(C^*(E))$$

(where $\tau_{(g,\mu)} \in T(C^*(E_{tight}))$ corresponds to (g,μ)) is an isomorphism.

・ 同 ト ・ ヨ ト ・ ヨ ト

Parametrizing $T(C^*(E))$

Theorem (C., Nagy)

(1) for any E, the map

$$T_1^{\mathsf{CCT}}(E_{\mathsf{tight}}) \ni (g, \mu) \mapsto \tau_{(g, \mu)} \circ \rho_{\mathsf{tight}} \in T(C^*(E))$$

(where $\tau_{(g,\mu)} \in T(C^*(E_{tight}))$ corresponds to (g,μ)) is an isomorphism.

(2) if E is tight, then $\tau \mapsto (g_{\tau}, \mu_{\tau})$ is an isomorphism from $T(C^*(E))$ onto $T_1^{CCT}(E)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Parametrizing $T(C^*(E))$

Theorem (C., Nagy)

(1) for any E, the map

$$T_1^{\mathsf{CCT}}(E_{\mathsf{tight}})
i (g, \mu) \mapsto au_{(g, \mu)} \circ
ho_{\mathsf{tight}} \in T(C^*(E))$$

(where $\tau_{(g,\mu)} \in T(C^*(E_{tight}))$ corresponds to (g,μ)) is an isomorphism.

(2) if E is tight, then
$$\tau \mapsto (g_{\tau}, \mu_{\tau})$$
 is an isomorphism from $T(C^*(E))$ onto $T_1^{CCT}(E)$.

The key fact used in the proof is that $\mathcal{M}(E_{\text{tight}}) \subset C^*(E_{\text{tight}})$ has the extension property and so every tracial state on $C^*(E_{\text{tight}})$ factors through the abelian core.

イロト イポト イヨト イヨト

When is $\tau \mapsto g_{\tau}$ injective

Tomforde noted that if *E* satisfies condition (K), then the map $\tau \mapsto g_{\tau}$ is injective. However this is not necessary.

Definition

Two (finite) paths λ and μ are *incomparable* if neither one contains the other as initial prefix. A vertex v is *essentially left infinite* if there is an infinite set $\{\lambda_k\}$ of finite paths that are pairwise incomparable and such that $s(\lambda_k) = v$ for all k.

Theorem (C., Nagy)

For a directed graph E the following are equivalent:

ヘロト ヘヨト ヘヨト ヘ

Definition

Two (finite) paths λ and μ are *incomparable* if neither one contains the other as initial prefix. A vertex v is *essentially left infinite* if there is an infinite set $\{\lambda_k\}$ of finite paths that are pairwise incomparable and such that $s(\lambda_k) = v$ for all k.

Theorem (C., Nagy)

For a directed graph E the following are equivalent:

```
(i) the map \tau \mapsto g_{\tau} is injective;
```

イロト 不得下 イヨト イヨト

Definition

Two (finite) paths λ and μ are *incomparable* if neither one contains the other as initial prefix. A vertex v is *essentially left infinite* if there is an infinite set $\{\lambda_k\}$ of finite paths that are pairwise incomparable and such that $s(\lambda_k) = v$ for all k.

Theorem (C., Nagy)

For a directed graph E the following are equivalent:

(i) the map $\tau \mapsto g_{\tau}$ is injective;

(ii) the source of each cycle in E is essentially left infinite.

・ロト ・聞ト ・ ヨト

Definition

Two (finite) paths λ and μ are *incomparable* if neither one contains the other as initial prefix. A vertex v is *essentially left infinite* if there is an infinite set $\{\lambda_k\}$ of finite paths that are pairwise incomparable and such that $s(\lambda_k) = v$ for all k.

Theorem (C., Nagy)

For a directed graph E the following are equivalent:

(i) the map $\tau \mapsto g_{\tau}$ is injective;

(ii) the source of each cycle in E is essentially left infinite.

・ロト ・聞ト ・ ヨト

(1) Would like to extend the notion of tightening to all groupoid C^* -algebras (*k*-graphs are already tricky).

- (1) Would like to extend the notion of tightening to all groupoid C^* -algebras (k-graphs are already tricky).
- (2) Would like to understand how to obtain tracial states on general groupoid C^* -algebras in relation to isotropy groups ([4] already has something like this but not quite what we want)

Bibliography

- R. J. Archbold. *Extensions of states of C*-algebras.* J. London Math. Soc. **21** (1980) 43-50
- D. Crytser and G. Nagy. *Traces arising from regular inclusions*. 2016. To appear, J. Aus. Math. Soc.
- A. Kumjian. On C*-diagonals. Can. Math. J. XXXVIII (1986) 969-1008.
- S. Nesheyev. *KMS states on the C*-algebras of nonprincipal groupoids*. 2013. J. Op. Theory. 513-530
- G. Nagy and S. Reznikoff. *Abelian core of graph algebras.* J. London Math. Soc. **3** (2012), 889-908
- M. Tomforde. The ordered K_0 -group of a graph C^* -algebra. C.R. Math. Acad. Sci. Soc. **25** (2003) 19-25

イロト イポト イヨト イヨト

Thank you!

.≞...>

< □ > < □ > < □