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Goals & Point of View

Our main goal is to describe the ideal structure of crossed
product C ∗-algebras.

Therefore a major objective is to describe the primitive ideal
space together with its Jacobson topology.

This is a difficult task and a general solution is well beyond
reach at present.

For example, even finding criteria for the simplicity of crossed
products is extremely hard and only partial results are known.

We will focus here on a small but important part of the
process.

First, we start with some basic definitions and examples.
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Dynamical Systems

Definition

A dynamical system (A,G , α) consists of a separable C ∗-algebra A,
a second countable locally compact group G and a homomorphism
α : G → Aut A such that s 7→ αs(a) is continuous for all a ∈ A.

Example (Transformation Groups)

Suppose that (G ,X ) is a locally compact transformation group.
Then we can define a dynamical system by lt : G → Aut C0(X ) by
lts(f )(x) := f (s−1 · x). In fact, if α : G → Aut C0(X ) is a
dynamical system, then α = lt for an appropriate action of G on X .

Example (Single Automorphisms)

Suppose that φ ∈ Aut A. Then we can define α : Z→ Aut A by
αn(a) := φn(a).
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Covariant Representations

Definition

A covariant representation of (A,G , α) on a Hilbert space H is a
pair (π,U) consisting of a representation π : A→ B(H) and a
unitary representation U : G → U(H) such that
π
(
αs(a)

)
= Usπ(a)U∗s for all a ∈ A and s ∈ G .

Example (Regular Representations)

Let (A,G , α) be any dynamical system and let ρ : A→ B(V) be a
representation. Then the associated regular representation on
L2(G ,V) is given by the covariant pair (π,U), where
π(a)h(r) = ρ

(
α−1

r (a)
)
ξ(r) and Usξ(r) = ξ(s−1r). Back
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Crossed Products

We can make Cc(G ,A) into a ∗-algebra with multiplication given
by f ∗ g(s) :=

∫
G f (r)αr

(
g(r−1s)

)
dr , and involution given by

f ∗(s) := ∆(s−1)αs

(
f (s−1)∗

)
. A covariant pair (π,U) defines a

∗-representation of Cc(G ,A):

π o U(f )h :=

∫
G
π
(
f (r)

)
Ur h dr .

The universal norm on Cc(G ,A) is given by

‖f ‖ := sup{ ‖π o U(f )‖ : (π,U) is convariant }.

The crossed product, A oα G , is the completion (Cc(G ,A), ‖ · ‖).
Every representation of A oα G is the integrated form of a
convariant representation. Thus the crossed product A oα G can
be thought of and a universal object for covariant representations
of (A,G , α)
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Regular Representations Again

Suppose that (A,G , α) is a dynamical system and ρ : A→ B(V) is
a representation of A. Let IndG

e ρ := π o U be the integrated form
of the associated regular representation on L2(G ,V). Then if
f ∈ Cc(G ,A),

(
IndG

e ρ
)
(f )ξ(r) =

∫
G
ρ
(
α−1

r

(
f (s)

))
ξ(s−1r) ds.

Example (Generic Example)

If G is amenable and ρ is faithful, then it is an old result of Takai
that IndG

e (ρ) is isometric for the universal norm. Then A oα G is
(isomorphic to) the closure in B

(
L2(G ,V)

)
of

{
(
IndG

e ρ
)
(f ) : f ∈ Cc(G ,A) }.

To give some more concrete and nontrivial examples, we need a bit
of machinery.
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Morita Equivalence

Note that we use simply “Morita equivalence” in place of
what Rieffel called “strong Morita equivalence”. Ordinary —
or what we prefer to call “weak”, or better yet “categorical”
Morita equivalence — is of little use, and it seems peculiar to
reserve the undecorated term for it.
Formally, A and B are Morita equivalent if we can find an
A – B-imprimitivity bimodule.

Definition

A Banach A – B-bimodule X is called an A – B-imprimitivity
bimodule if it is both a left Hilbert A-module and a right Hilbert
B-module such that

The ideals
A
〈X , X〉 and 〈X , X〉

B
are dense in A and B,

respectively.

〈a · x , y〉
B

= 〈x , a∗ · y〉
B

and
A
〈x · b , y〉 =

A
〈x , y · b∗〉 and

A
〈x , y〉 · z = x · 〈y , z〉

B
.
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The Brown-Green-Rieffel Theorem
— How not to think of Morita equivalence

Of course, Morita equivalence is weaker than isomorphism.

If A and B are separable — or even σ-unital — then the
Brown-Green-Rieffel Theorem says that A and B are Morita
equivalent if and only if A and B are stably isomorphic (i.e.,
A⊗K ∼= B ⊗K).

Although much celebrated, the BGR-Theorem is probably not
a good way to “understand” Morita theory.

Instead, I encourage you to think in terms of representation
theory.
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Induced Representations

Let X be a A – B-imprimitivity bimodule, and suppose that π
is a representation of B on Hπ.

We can form a Hilbert space X⊗B Hπ which is the
completion of (the algebraic tensor product) X�Hπ with
respect to the pre-inner product satisfying

(x ⊗ ξ | y ⊗ η) =
(
π
(
〈y , x〉

B

)
ξ | η

)
.

We get an induced representation X–Indπ of A on X⊗B Hπ
via

X–Indπ(a)[x ⊗ ξ] := [a · x ⊗ ξ].

The map π 7→ X–Indπ establishes an equivalence between the
categories of representations of A and representations of B.

In particular, π is irreducible if and only if X–Indπ is
irreducible and every irreducible representation of A is of this
form.

Dana P. Williams The Mackey Machine for Crossed Products



Mackey’s Imprimitivity Theorem

Example (Mackey’s Imprimitivity Theorem)

Suppose that H is a closed subgroup of G . In modern language,
Mackey’s Imprimitivity Theorem says that C0(G/H) olt G is
Morita equivalent to C ∗(H).

Example (Mackey’s Induced Representations)

There is a natural map φ of C ∗(G ) into M
(
C0(G/H) olt G

)
. Then

we can realize the representation of G induced from a
representation ω of H by UG

Hω := X–Indω ◦ φ.

Remark (Stone-von Neumann Theorem)

The Imprimitivity Theorem implies that C0(G ) olt G is simple.
Then it is not difficult to see that C0(G ) olt G ∼= K

(
L2(G )

)
.
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More Examples

Example

1 With quite a bit more work, Green was able to use the
Imprimitivity Theorem to show that
C0(G/H) olt G ∼= C ∗(H)⊗K

(
L2(G/H)

)
.

2 C0(R/Z) olt θZ ∼= Aθ.

3 If αs(a) = usau∗s for a strictly continuous homomorphism
u : G → UM(A), then A oα G ∼= A⊗max C ∗(G ).

4 Let GP = { s ∈ G : P = s · P }, where s · P := αs(P), be the
stability group at P. If sGP 7→ s · P is a homeomorphism of
G/GP onto Prim A, then A oα G is Morita equivalent to
A/P oαP GP .

Remark (Stability Groups)

The last example is meant to illustrate the maxim that stability
groups play a key role in the ideal structure of crossed products.
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Induced Representations of Crossed Products

If H is a subgroup of G , then A oα|H H is Morita equivalent to

EG
H (A) := C0(G/H,A) olt⊗α G (via XG

H) and there is a natural
map φ : A oα G → M

(
EG

H (A)
)
. We define the representation of

A oα G induced from the representation L of A oα|H H to be

IndG
H L := XG

H–Ind(L) ◦ φ.

Example (Regular Representations)

If we let H = { e } be the trivial subgroup and view a
representation ρ : A→ B(V) as a covariant representation of the
degenerate system (A, { e }, id), then the corresponding induced
representation is (equivalent to) the regular representation IndG

e ρ
defined earlier.
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Restriction and Induced Ideals

Proposition (Maps on Ideals)

There are continuous maps IndG
H : I

(
A oα|H H

)
→ I

(
A oα G

)
and Res : I

(
A oα G

)
→ I (A) such that

IndG
H(ker L) = ker

(
IndG

H L
)

and Res
(
ker(π o U)

)
= ker π.

Remark (The Role of Res)

If L is a representation of A oα G and if I = Res ker L, then L
factors through A/I oαI G .
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The Mackey Machine

In loose terms, the Mackey Machine (or the Green-Mackey-Rieffel
Machine) for crossed products A oα G is the process of recovering
the primitive ideal space of A oα G via induction from systems
associated to the stability groups GP for P ∈ Prim A.

For motivation, let’s look briefly at an example where everything
works rather nicely. Namely, we’ll look at transformation groups
(G ,X ) with G abelian. Fix x ∈ X , ω ∈ Ĝ and let Gx be the
stability group at x . Then evaluation at x , evx , is a representation
of C0(X ) and (evx , ω|Gx ) is a covariant representation of(
C0(G ),Gx , lt

)
. It is not hard to see that the induced

representation IndG
Gx

(evx oσ|Gx ) is equivalent to the representation

IndG
Gx

(ω|Gx ) on B
(
L2(G/Gx)

)
given by the covariant pair (M,U)

where M(φ)h(ṡ) = φ(s · x) and Ur h(ṡ) = ω(r)h(r−1ṡ). Return
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A Theorem from Antiquity

P1: Work of Mackey (1949) shows that IndG
Gx

(ω|Gx ) is always an
irreducible representation of C0(X ) olt G .

P2: A deep theorem of Gootman, Rosenberg and Sauvageot
(about which I’ll have much more to say shortly) implies that
if K ∈ Prim

(
C0(X ) olt G

)
then there is (x , ω) ∈ X × Ĝ such

that K = ker
(
IndG

Gx
(ω|Gx )

)
.

Theorem (W 1981)

The map (x , ω) 7→ IndG
Gx

(ω|Gx ) is a continuous open surjection of

X × Ĝ onto Prim
(
C0(X ) olt G

)
. It induces a homeomorphism of

Prim
(
C0(X ) olt G

)
onto the quotient (X × Ĝ )/∼, where

(x , ω) ∼ (y , σ) if and only if G · x = G · y and σω̄ ∈ G⊥x = G⊥y .
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Moving Forward

The object of the exercise is to extend this result to more general
crossed products. Ideally, this entails finding an easily described
space Z (played by X × Ĝ above), and a surjection from Z to
Prim A oα G . Then we realize Prim A oα G as the quotient —
perhaps even topologically. We need analogues of P1 to see that
the map is into, and P2 to see that it is surjective.
In order to properly formulate such statements, we need the
following.

Definition

A primitive ideal K ∈ Prim(A oα G ) is induced if there is a
P ∈ Prim A and a J in Prim(A oα|GP

GP) such that Res J = P and

IndG
GP

J = K .

To see that this is the “right” definition, let’s look at a particularly
nice case.
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The Smooth Case = Regular Case = Nice Case

Theorem (The Regular Case)

Suppose that (A,G , α) is separable, that A is type I and that
G\Prim A is a T0 topological space. Then every primitive ideal of
A oα G is induced. In fact, if R is an irreducible representation of
A oα G , then there is a P ∈ Prim A and a irreducible representation
L = π o V of A oα|GP

GP such that ker π = P and R = IndG
GP

L.

Sketch of the Proof.

The hypotheses imply that each orbit G · P is locally closed in
Prim A and homeomorphic to G/GP ; hence there is a subquotient
A(G · P) = I/J of A whose primitive ideal space can be identified
with G · P. It follows that every irreducible representation of
A oα G is lifted from a subquotient of the form A(G · P) oαJ G .
Since G · P ∼= G/GP , the latter is Morita equivalent to
A/P oαP GP , and the result follows.
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The Effros-Hahn Conjecture

In 1967, Effros and Hahn conjectured that, provided G is
amenable, every primitive ideal of a crossed product should be
induced (even if the action of G on Prim A is pathological).

Many people worked on various versions of this conjecture, but the
final qed was written by Gootman and Rosenberg in 1979.

Theorem (Gootman-Rosenberg-Sauvageot)

If (A,G , α) is separable and if G is amenable, then every primitive
ideal of A oα G is induced.

Example

Suppose that G is amenable, that G acts freely on Prim A and that
A has no nontrivial G -invariant ideals. Then A oα G is simple.
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The Missing Piece

So why are we here?

The GRS-Theorem — and for that matter, our result for regular
systems — does not address the following question.

Question

If J ∈ Prim(A oα|GP
GP) is such that Res J = P, then must

IndG
GP

J be primitive?

Lack of an answer for this question is unsatisfactory on several
levels. In particular, it provides a real obstruction for a fine analysis
of the ideal structure of crossed products where the ultimate goal
of the Green-Mackey-Rieffel machine is to give a succinct
description of Prim(A oα G ) and its topology.
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EHI and Strong-EHI

Definition

We say that (A,G , α) satisfies the Effros-Hahn Induction Property
(EHI) if given P ∈ Prim A and a J ∈ Prim

(
A oα|GP

GP

)
such that

Res J = P, then IndG
GP

J is primitive. We say that (A,G , α)
satisfies the strong Effros-Hahn Induction Property (strong-EHI) if
given P ∈ Prim A and an irreducible representation ρo V of
A oα|GP

GP such that ker ρ = P, then IndG
GP

(ρo V ) is irreducible.

Conjecture

Every separable dynamical system (A,G , α) satisfies EHI.

At least I Hope its True

Every separable dynamical system (A,G , α) satisfies EHI.

As we shall see, it is possible that every separable system satisfies
strong-EHI.
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What does the GRS-Theorem say about EHI?

Recall that a representation ρ : A→ B(H) is called homogeneous
if every nonzero subrepresentation of ρ has the same kernel as ρ.

ρ ∈ Â =⇒ ρ factorial =⇒ ρ homogeneous =⇒ ker ρ prime.

And prime ideals are primitive in separable C ∗-algebras.

Proposition (Sauvageot)

Suppose that (A,G , α) is separable and that ρ is a homogeneous
representation of A with kernel P ∈ Prim A and that ρo V is a
homogeneous representation of A oα|GP

GP . Then IndG
GP

(ρo V ) is
homogeneous.

The “extra” condition on ρ means that this proposition only
directly implies that (A,G , α) satisfies EHI if we know that any
irreducible representation ρo V of A oα|GP

GP must have ρ
homogeneous. Unfortunately, this is not always the case.
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Upgrading to strong-EHI

Theorem (EW)

Suppose that (A,G , α) is separable and that L = ρo V is an
irreducible representation of A oα|GP

GP such that ρ homogeneous

with kernel P. Then IndG
GP

L is irreducible.

Sketch of the Proof.

We can realize IndG
GP

L as a representation π o U on L2(G/GP ,H)
such that

π =

∫ ⊕
G/GP

πṡ dµ(ṡ).

Since ρ is homogeneous, each πṡ is homogeneous with kernel s · P.
Then a deep result of Effros’s forces

π(A)′ ⊂ M
(
C0(G/GP)

)′
,

where M(φ)h(ṡ) = φ(ṡ)h(ṡ). Then any T which commutes with
π o U must also commute with (M ⊗ π) o U ∼= XG

GP
–Ind L. Since the

latter is irreducible, T is a scalar.
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Our First Positive Result

Theorem

Suppose that (A,G , α) is separable and that points in Prim A are
locally closed.a Then (A,G , α) satisfies strong-EHI.

aIf A is of type I, then points in Prim A ∼= Â are always locally closed.

Sketch of the Proof.

When P is open in its closure, then we can prove that whenever
ρo V is an irreducible representation of A oα|GP

GP , we must have
ρ homogeneous. In that event, the previous theorem applies.

Remark (Back to P1 & P2 in the “Antiquity Result”)

The above result supplies another proof of Mackey’s result (P1) in
our motivational example. However, for A commutative, the
irreducibility of the induced representation holds without any
separability hypotheses.
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Another Result in Support of the Conjecture

Theorem

Suppose that (A,G , α) is separable and that each stability group
GP is normal in G .a Then (A,G , α) satisfies strong-EHI.

aNote that this hypothesis holds automatically if G is abelian.

Sketch of the Proof.

Using twisted crossed products, we can write A oα G as an
iterated twisted crossed product (A oα|GP

GP) oτ
γ G . This allows

us, in essence, to reduce to the case where the action is free. Then
our theorem applies.
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What about the GRS-Theorem?

If G is amenable — or at least if all the GP are amenable — then
it seems reasonable to guess that the GRS-Theorem should provide
an answer to our conjecture.
For example, suppose that GP is amenable and J ∈ Prim A oα GP

with Res J = P. The GRS-Theorem implies that J = IndGP

(GP)Q
K

where K ∈ Prim A oα (GP)Q and K = ker(σ o W ) with both
σ o W and σ homogeneous, and with ker σ = Q. If GQ ⊂ GP , so
that (GP)Q = GQ , then

IndG
GP

J = IndG
GP

IndGP
GQ

K = IndG
GQ

K ,

which is primitive by Sauvageot’s result. Unfortunately, we can’t
see that GQ need be a subset of GP in this special setting.
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A Positive or a Negative Result: You Decide.

But what we can prove is this.

Proposition

Suppose that (A,G , α) is separable, that all the GP are amenable
and that whenever P,Q ∈ Prim A satisfy

P =
⋂

s∈GP

s · Q,

then either GQ ⊂ N(GP) or GP ⊂ N(GQ) (where
N(H) = { s ∈ G : sHs−1 ⊂ H } is the normalizer of H in G ). Then
(A,G , α) satisfies EHI.

If nothing else, this suggests that any counterexample to the
conjecture will have an “interesting” orbit structure.
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Open Questions & Future Directions

It is still open as to whether every separable C ∗-dynamical
system satisfies EHI — or even strong-EHI.

These questions are open even if G is amenable.

Marius Ionescu and I are currently working on extending the
theory to groupoid dynamical systems.

For groupoid systems, Renault has proved a version of the
GRS-Theorem. However, Renault’s result does not directly
address the issue of “inducing from stability groups”.

In fact, it is not even clear exactly what “inducing from
stability groups” should mean in this generality.

However, in the scalar case, we have some positive results.
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For Example: The Scalar Case

If G is a second countable, locally compact Hausdorff groupoid
with a Haar system, then there is a notion of induction from a
stability group H := G (u) := { x ∈ G : s(x) = u = r(x) }
which is completely analogous to the situation in the case of
(ordinary) dynamical systems described previously.

Here, Gu = s−1(u) is a principal right H-space, and we can
form the imprimitivity groupoid HG = Gu ∗r Gu/H.

HG is equivalent to H and Renault’s Equivalence Theorem
implies that C ∗(HG ) is Morita equivalent to C ∗(H). There is
a homomorphism φ of C ∗(G ) into M(C ∗(HG )) and we have
IndG

H L := X–Ind L ◦ φ.
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Groupoid C ∗-algebras satisfy strong-EHI

Theorem (Ionescu & W)

Suppose that G is a second countable, locally compact Hausdorff
groupoid with a Haar system. Let H = G (u) be a stability group.
If L is an irreducible representation of H, then IndG

H L is an
irreducible representation of G .

Sketch of the proof in a special case.

If the orbit [u] := r
(
s−1(u)

)
= r(Gu) is closed, then C ∗(G |[u]) is a

quotient of C ∗(G ). However, G |[u] is equivalent to G (u).
Therefore Renault’s Equivalence Theorem implies C ∗(G |[u]) is
Morita equivalent to C ∗(G (u)), and the result follows in this
special case.

In general, [u] can be badly embedded in G . Nevertheless,
compact subsets of the orbit sit inside G sufficiently nicely to take
advantage of the ideas in the above argument.
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GRS For Groupoid C ∗-algebras

Based on some very deep work of Renault — including a version of
Effros’s direct integral result for groupoid crossed products —
Marius Ionescu and I were able to prove the following.

Theorem (Ionescu and W)

Suppose that G is an amenable locally compact second countable
groupoid with a Haar system. Then every primitive ideal of C ∗(G )
is induced. That is, if K ∈ Prim C ∗(G ), then there is a u ∈ G (0)

and a J ∈ Prim C ∗(G (u)) such that K = IndG
G(u) J.

Even though the proof of the above theorem involves groupoid
dynamical systems in a nontrivial way, we are still quite far from
even formulating a good theory for general groupoid crossed
products. But we’re working on it.
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