Phase transitions in a number-theoretic dynamical system

Iain Raeburn

University of Wollongong

GPOTS June 2009

This talk is about joint work with Marcelo Laca.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

In physical models, observables of the system are represented by self-adjoint elements of *A*, and states of the system by positive functionals of norm 1 on *A*: $\phi(a)$ is the expected value of the observable *a* in the state ϕ (which is real because $a = a^*$ and $\phi \ge 0$).

(ロ) (同) (三) (三) (三) (三) (○) (○)

In physical models, observables of the system are represented by self-adjoint elements of *A*, and states of the system by positive functionals of norm 1 on *A*: $\phi(a)$ is the expected value of the observable *a* in the state ϕ (which is real because $a = a^*$ and $\phi \ge 0$).

The action α represents the time evolution of the system: the observable *a* at time 0 moves to $\alpha_t(a)$ at time *t*, or the state ϕ at time 0 moves to $\phi \circ \alpha_t$.

In physical models, observables of the system are represented by self-adjoint elements of *A*, and states of the system by positive functionals of norm 1 on *A*: $\phi(a)$ is the expected value of the observable *a* in the state ϕ (which is real because $a = a^*$ and $\phi \ge 0$).

The action α represents the time evolution of the system: the observable *a* at time 0 moves to $\alpha_t(a)$ at time *t*, or the state ϕ at time 0 moves to $\phi \circ \alpha_t$.

In statistical physics, an important role is played by *equilibrium states*, which are in particular invariant under the time evolution.

 $A^a := \{a \in A : t \mapsto \alpha_t(a) \text{ extends to be analytic on } \mathbb{C}\}$

of *analytic elements* is a dense subalgebra of *A*. A state ϕ on *A* is a *KMS state at inverse temperature* β if

$$\phi(ab) = \phi(b\alpha_{i\beta}(a))$$
 for all $a, b \in A^a$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $A^a := \{a \in A : t \mapsto \alpha_t(a) \text{ extends to be analytic on } \mathbb{C}\}$

of *analytic elements* is a dense subalgebra of *A*. A state ϕ on *A* is a *KMS state at inverse temperature* β if

$$\phi(ab) = \phi(b\alpha_{i\beta}(a))$$
 for all $a, b \in A^a$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• KMS states are α -invariant.

 $A^a := \{a \in A : t \mapsto \alpha_t(a) \text{ extends to be analytic on } \mathbb{C}\}$

of *analytic elements* is a dense subalgebra of *A*. A state ϕ on *A* is a *KMS state at inverse temperature* β if

$$\phi(ab) = \phi(b\alpha_{i\beta}(a))$$
 for all $a, b \in A^a$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- KMS states are α -invariant.
- It suffices to check the KMS_β condition on a dense subspace of A^a.

 $A^a := \{a \in A : t \mapsto \alpha_t(a) \text{ extends to be analytic on } \mathbb{C}\}$

of *analytic elements* is a dense subalgebra of *A*. A state ϕ on *A* is a *KMS state at inverse temperature* β if

$$\phi(ab) = \phi(b\alpha_{i\beta}(a))$$
 for all $a, b \in A^a$.

- KMS states are α -invariant.
- It suffices to check the KMS_β condition on a dense subspace of A^a.
- The KMS_β states always form a simplex, and the extremal KMS_β states are factor states.

 $A^a := \{a \in A : t \mapsto \alpha_t(a) \text{ extends to be analytic on } \mathbb{C}\}$

of *analytic elements* is a dense subalgebra of *A*. A state ϕ on *A* is a *KMS state at inverse temperature* β if

$$\phi(ab) = \phi(b\alpha_{i\beta}(a))$$
 for all $a, b \in A^a$.

- KMS states are α -invariant.
- It suffices to check the KMS_β condition on a dense subspace of A^a.
- The KMS_β states always form a simplex, and the extremal KMS_β states are factor states.
- In a physical model we expect KMS states for most β .

The relation $s_j^* s_j = 1$ says that s_j is an isometry, and then $s_j s_j^*$ is the range projection.

The relation $s_j^* s_j = 1$ says that s_j is an isometry, and then $s_j s_j^*$ is the range projection. Then $1 = \sum_{j=1}^n s_j s_j^*$ implies that these range projections are mutually orthogonal — in particular, $s_j^* s_k = 0$ for $j \neq k$.

The relation $s_j^* s_j = 1$ says that s_j is an isometry, and then $s_j s_j^*$ is the range projection. Then $1 = \sum_{j=1}^n s_j s_j^*$ implies that these range projections are mutually orthogonal — in particular, $s_j^* s_k = 0$ for $j \neq k$. So every word in the s_j and s_k^* has the form

$$s_{\mu}s_{\nu}^*:=s_{\mu_1}\cdots s_{\mu_{|\mu|}}(s_{\nu_1}\cdots s_{\nu_{|\nu|}})^*,$$

and $\mathcal{O}_n = \overline{\operatorname{span}} \{ s_\mu s_\nu^* \}.$

The relation $s_j^* s_j = 1$ says that s_j is an isometry, and then $s_j s_j^*$ is the range projection. Then $1 = \sum_{j=1}^n s_j s_j^*$ implies that these range projections are mutually orthogonal — in particular, $s_j^* s_k = 0$ for $j \neq k$. So every word in the s_j and s_k^* has the form

$$oldsymbol{s}_{\mu}oldsymbol{s}_{
u}^*:=oldsymbol{s}_{\mu_1}\cdotsoldsymbol{s}_{\mu_{|\mu|}}(oldsymbol{s}_{
u_1}\cdotsoldsymbol{s}_{
u_{|
u|}})^*,$$

and $\mathcal{O}_n = \overline{\operatorname{span}} \{ s_\mu s_\nu^* \}.$

We have $\alpha_t(s_\mu s_\nu^*) = e^{it(|\mu| - |\nu|)} s_\mu s_\nu^*$, which makes sense for $t \in \mathbb{C}$, so the $s_\mu s_\nu^*$ are analytic elements.

If ϕ is a KMS_{β} state then ϕ is α -invariant, so $\phi(s_{\mu}s_{\nu}^*) = 0$ unless $|\mu| = |\nu|$.

$$\phi(\boldsymbol{s}_{\mu}\boldsymbol{s}_{\nu}^{*}) = \phi(\boldsymbol{s}_{\nu}^{*}\alpha_{i\beta}(\boldsymbol{s}_{\mu})) = \boldsymbol{e}^{j^{2}\beta|\mu|}\phi(\boldsymbol{s}_{\nu}^{*}\boldsymbol{s}_{\mu}) = \begin{cases} 0 & \text{if } \nu \neq \mu \\ \boldsymbol{e}^{-\beta|\mu|} & \text{if } \nu = \mu. \end{cases}$$

$$\phi(\boldsymbol{s}_{\mu}\boldsymbol{s}_{\nu}^{*}) = \phi(\boldsymbol{s}_{\nu}^{*}\alpha_{i\beta}(\boldsymbol{s}_{\mu})) = \boldsymbol{e}^{i^{2}\beta|\mu|}\phi(\boldsymbol{s}_{\nu}^{*}\boldsymbol{s}_{\mu}) = \begin{cases} 0 & \text{if } \nu \neq \mu \\ \boldsymbol{e}^{-\beta|\mu|} & \text{if } \nu = \mu. \end{cases}$$

Lemma.
$$\phi$$
 is a KMS $_{\beta}$ state iff $\phi(s_{\mu}s_{\nu}^{*}) = \begin{cases} 0 & \text{if } \nu \neq \mu \\ e^{-\beta|\mu|} & \text{if } \nu = \mu. \end{cases}$

$$\phi(\boldsymbol{s}_{\mu}\boldsymbol{s}_{\nu}^{*}) = \phi(\boldsymbol{s}_{\nu}^{*}\alpha_{i\beta}(\boldsymbol{s}_{\mu})) = \boldsymbol{e}^{j^{2}\beta|\mu|}\phi(\boldsymbol{s}_{\nu}^{*}\boldsymbol{s}_{\mu}) = \begin{cases} 0 & \text{if } \nu \neq \mu \\ \boldsymbol{e}^{-\beta|\mu|} & \text{if } \nu = \mu. \end{cases}$$

Lemma.
$$\phi$$
 is a KMS _{β} state iff $\phi(s_{\mu}s_{\nu}^{*}) = \begin{cases} 0 & \text{if } \nu \neq \mu \\ e^{-\beta|\mu|} & \text{if } \nu = \mu. \end{cases}$
If ϕ is a KMS _{β} state on \mathcal{O}_n then

$$1 = \phi(1) = \sum_{j=1}^{n} \phi(s_j s_j^*) = \sum_{j=1}^{n} e^{-\beta} = n e^{-\beta} \Longrightarrow \beta = \log n.$$

$$\phi(\boldsymbol{s}_{\mu}\boldsymbol{s}_{\nu}^{*}) = \phi(\boldsymbol{s}_{\nu}^{*}\alpha_{i\beta}(\boldsymbol{s}_{\mu})) = \boldsymbol{e}^{j^{2}\beta|\mu|}\phi(\boldsymbol{s}_{\nu}^{*}\boldsymbol{s}_{\mu}) = \begin{cases} 0 & \text{if } \nu \neq \mu \\ \boldsymbol{e}^{-\beta|\mu|} & \text{if } \nu = \mu. \end{cases}$$

Lemma.
$$\phi$$
 is a KMS _{β} state iff $\phi(s_{\mu}s_{\nu}^{*}) = \begin{cases} 0 & \text{if } \nu \neq \mu \\ e^{-\beta|\mu|} & \text{if } \nu = \mu. \end{cases}$
If ϕ is a KMS _{β} state on \mathcal{O}_n then

$$1 = \phi(1) = \sum_{j=1}^{n} \phi(s_j s_j^*) = \sum_{j=1}^{n} e^{-\beta} = n e^{-\beta} \Longrightarrow \beta = \log n.$$

So \mathcal{O}_n has at most one KMS $_\beta$ state, when $\beta = \log \log n$. Does it have one?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Define
$$\Phi : \mathcal{O}_n \to \mathcal{O}_n^{\alpha}$$
 by $\Phi(a) = \int_0^1 \alpha_{2\pi t}(a) dt$.

 $\mathcal{O}_n^{\alpha} = \overline{\bigcup_{k=1}^{\infty} \operatorname{span}\{s_{\mu}s_{\nu}^* : |\mu| = |\nu| = k\}} = \overline{\bigcup_{k=1}^{\infty} M_{n^k}(\mathbb{C})}$ carries a unique tracial state τ .

 $\mathcal{O}_n^{\alpha} = \overline{\bigcup_{k=1}^{\infty} \operatorname{span}\{s_{\mu}s_{\nu}^* : |\mu| = |\nu| = k\}} = \overline{\bigcup_{k=1}^{\infty} M_{n^k}(\mathbb{C})}$ carries a unique tracial state τ .

Theorem (Olesen-Pedersen 1978). $\tau \circ \Phi$ is a KMS_{log n} state.

(ロ) (同) (三) (三) (三) (○) (○)

 $\mathcal{O}_n^{\alpha} = \overline{\bigcup_{k=1}^{\infty} \operatorname{span}\{s_{\mu}s_{\nu}^* : |\mu| = |\nu| = k\}} = \overline{\bigcup_{k=1}^{\infty} M_{n^k}(\mathbb{C})}$ carries a unique tracial state τ .

Theorem (Olesen-Pedersen 1978). $\tau \circ \Phi$ is a KMS_{log n} state.

Laca-Exel, Laca-Neshveyev: Most of the above works equally well for $TO_n = C^*(s_j : s_j^* s_j = 1 \ge \sum_{j=1}^n s_j s_j^*)$. For each β there is at most one KMS $_\beta$ state.

 $\mathcal{O}_n^{\alpha} = \overline{\bigcup_{k=1}^{\infty} \operatorname{span}\{s_{\mu}s_{\nu}^* : |\mu| = |\nu| = k\}} = \overline{\bigcup_{k=1}^{\infty} M_{n^k}(\mathbb{C})}$ carries a unique tracial state τ .

Theorem (Olesen-Pedersen 1978). $\tau \circ \Phi$ is a KMS_{log n} state.

Laca-Exel, Laca-Neshveyev: Most of the above works equally well for $\mathcal{TO}_n = C^*(s_j : s_j^* s_j = 1 \ge \sum_{j=1}^n s_j s_j^*)$. For each β there is at most one KMS $_\beta$ state. Applying a KMS $_\beta$ state to the relation $1 \ge \sum_{j=1}^n s_j s_j^*$ shows that $\beta \ge \log n$.

 $\mathcal{O}_n^{\alpha} = \overline{\bigcup_{k=1}^{\infty} \operatorname{span}\{s_{\mu}s_{\nu}^* : |\mu| = |\nu| = k\}} = \overline{\bigcup_{k=1}^{\infty} M_{n^k}(\mathbb{C})}$ carries a unique tracial state τ .

Theorem (Olesen-Pedersen 1978). $\tau \circ \Phi$ is a KMS_{log n} state.

Laca-Exel, Laca-Neshveyev: Most of the above works equally well for $\mathcal{TO}_n = C^*(s_j : s_j^* s_j = 1 \ge \sum_{j=1}^n s_j s_j^*)$. For each β there is at most one KMS $_\beta$ state. Applying a KMS $_\beta$ state to the relation $1 \ge \sum_{j=1}^n s_j s_j^*$ shows that $\beta \ge \log n$.

Consider $\Sigma^* = \bigcup_{k \ge 0} \{1, \dots, n\}^k$, and S_j on $\ell^2(\Sigma^*)$ defined by $S_j e_\mu = e_{j\mu}$, giving a representation π_S of \mathcal{TO}_n .

 $\mathcal{O}_n^{\alpha} = \overline{\bigcup_{k=1}^{\infty} \operatorname{span}\{s_{\mu}s_{\nu}^* : |\mu| = |\nu| = k\}} = \overline{\bigcup_{k=1}^{\infty} M_{n^k}(\mathbb{C})}$ carries a unique tracial state τ .

Theorem (Olesen-Pedersen 1978). $\tau \circ \Phi$ is a KMS_{log n} state.

Laca-Exel, Laca-Neshveyev: Most of the above works equally well for $\mathcal{TO}_n = C^*(s_j : s_j^* s_j = 1 \ge \sum_{j=1}^n s_j s_j^*)$. For each β there is at most one KMS $_\beta$ state. Applying a KMS $_\beta$ state to the relation $1 \ge \sum_{j=1}^n s_j s_j^*$ shows that $\beta \ge \log n$.

Consider $\Sigma^* = \bigcup_{k \ge 0} \{1, \dots, n\}^k$, and S_j on $\ell^2(\Sigma^*)$ defined by $S_j e_\mu = e_{j\mu}$, giving a representation π_S of \mathcal{TO}_n . Then

$$\phi_{eta}(a) = (1 - ne^{-eta}) \sum_{\mu \in \Sigma^*} e^{-eta \mid \mu \mid} (\pi_{\mathcal{S}}(a) e_{\mu} \mid e_{\mu})$$

defines a KMS_{β} state on TO_n for every $\beta > \log n$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Examples. $\mathcal{T}(\mathbb{N})$ is generated by the unilateral shift, and is the universal C^* -algebra generated by an isometry (Coburn 1967).

Examples. $\mathcal{T}(\mathbb{N})$ is generated by the unilateral shift, and is the universal *C**-algebra generated by an isometry (Coburn 1967). Roughly, the same is true when *P* is the positive cone in a totally ordered abelian group (Douglas 1972, Murphy 1987).

Examples. $\mathcal{T}(\mathbb{N})$ is generated by the unilateral shift, and is the universal *C*^{*}-algebra generated by an isometry (Coburn 1967). Roughly, the same is true when *P* is the positive cone in a totally ordered abelian group (Douglas 1972, Murphy 1987).

 $\mathcal{T}(\mathbb{N}^2)$ is generated by the isometries T_{e_1} , T_{e_2} , but is not universal for such pairs: T satisfies the extra relation $T_{e_1}T_{e_2}^* = T_{e_2}^*T_{e_1}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Examples. (\mathbb{Z}, \mathbb{N}) , $(\mathbb{Z}^2, \mathbb{N}^2)$, $(\mathbb{Q}^*_+, \mathbb{N}^{\times})$.

Examples. (\mathbb{Z}, \mathbb{N}) , $(\mathbb{Z}^2, \mathbb{N}^2)$, $(\mathbb{Q}^*_+, \mathbb{N}^{\times})$.

For $x, y \in G$ we define $x \leq y \iff x^{-1}y \in P \iff y \in xP$, and then \leq is a partial order on *G*.

Def. [Nica, 92]. (G, P) is *quasi-lattice ordered* if every pair $x, y \in G$ with a common upper bound in P has a least upper bound $x \lor y$ in P.

(ロ) (同) (三) (三) (三) (○) (○)

Examples. (\mathbb{Z}, \mathbb{N}) , $(\mathbb{Z}^2, \mathbb{N}^2)$, $(\mathbb{Q}^*_+, \mathbb{N}^{\times})$.

For $x, y \in G$ we define $x \leq y \iff x^{-1}y \in P \iff y \in xP$, and then \leq is a partial order on *G*.

Def. [Nica, 92]. (G, P) is *quasi-lattice ordered* if every pair $x, y \in G$ with a common upper bound in P has a least upper bound $x \lor y$ in P.

Examples. (1) In $(\mathbb{Z}^2, \mathbb{N}^2)$ we have

 $(m_1, m_2) \lor (n_1, n_2) = (\max(m_1, n_1), \max(m_2, n_2)).$

Examples. (\mathbb{Z}, \mathbb{N}) , $(\mathbb{Z}^2, \mathbb{N}^2)$, $(\mathbb{Q}^*_+, \mathbb{N}^{\times})$.

For $x, y \in G$ we define $x \leq y \iff x^{-1}y \in P \iff y \in xP$, and then \leq is a partial order on *G*.

Def. [Nica, 92]. (G, P) is *quasi-lattice ordered* if every pair $x, y \in G$ with a common upper bound in P has a least upper bound $x \lor y$ in P.

Examples. (1) In $(\mathbb{Z}^2, \mathbb{N}^2)$ we have

 $(m_1, m_2) \lor (n_1, n_2) = (\max(m_1, n_1), \max(m_2, n_2)).$

(2) In $(\mathbb{Q}^*_+, \mathbb{N}^{\times})$, $m \leq n \iff m | n$, and $m \lor n = [m, n]$.

Examples. (\mathbb{Z}, \mathbb{N}) , $(\mathbb{Z}^2, \mathbb{N}^2)$, $(\mathbb{Q}^*_+, \mathbb{N}^{\times})$.

For $x, y \in G$ we define $x \leq y \iff x^{-1}y \in P \iff y \in xP$, and then \leq is a partial order on *G*.

Def. [Nica, 92]. (G, P) is *quasi-lattice ordered* if every pair $x, y \in G$ with a common upper bound in P has a least upper bound $x \lor y$ in P.

Examples. (1) In $(\mathbb{Z}^2, \mathbb{N}^2)$ we have

 $(m_1, m_2) \lor (n_1, n_2) = (\max(m_1, n_1), \max(m_2, n_2)).$

(2) In $(\mathbb{Q}^*_+, \mathbb{N}^{\times})$, $m \leq n \iff m | n$, and $m \lor n = [m, n]$.

(3) \mathbb{F}_2 is the free group with generators a, b, and $P = \langle a, b \rangle$. Then $x \leq y$ means that x is an initial segment of y, and the rest of y has no factors of a^{-1} or b^{-1} . Here $x \lor y = \infty$ often. An isometric representation $V : P \rightarrow \text{Isom}(H)$ is *Nica covariant* if

$$(V_x V_x^*)(V_y V_y^*) = \begin{cases} V_{x \lor y} V_{x \lor y}^* & \text{if } x \lor y < \infty \\ 0 & \text{if } x \lor y = \infty. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

For example, $T : P \rightarrow \text{Isom}(\ell^2(P))$.

An isometric representation $V : P \rightarrow \text{Isom}(H)$ is *Nica covariant* if

$$(V_x V_x^*)(V_y V_y^*) = \begin{cases} V_{x \lor y} V_{x \lor y}^* & \text{if } x \lor y < \infty \\ 0 & \text{if } x \lor y = \infty. \end{cases}$$

For example, $T : P \rightarrow \text{Isom}(\ell^2(P))$. Nica covariance implies

$$V_{x}^{*}V_{y} = (V_{x}^{*}V_{x})V_{x}^{*}V_{y}(V_{y}^{*}V_{y}) = V_{x}^{*}(V_{x}V_{x}^{*})(V_{y}V_{y}^{*})V_{y}$$

= $V_{x}^{*}(V_{x\vee y}V_{x\vee y}^{*})V_{y} = V_{x}^{*}V_{x}V_{x^{-1}(x\vee y)}V_{y^{-1}(x\vee y)}^{*}V_{y}^{*}V_{y}$
= $V_{x^{-1}(x\vee y)}V_{y^{-1}(x\vee y)}^{*},$

so $C^*(V) = \overline{\text{span}}\{V_x V_y^* : x, y \in P\}.$

An isometric representation $V : P \rightarrow \text{Isom}(H)$ is *Nica covariant* if

$$(V_x V_x^*)(V_y V_y^*) = \begin{cases} V_{x \lor y} V_{x \lor y}^* & \text{if } x \lor y < \infty \\ 0 & \text{if } x \lor y = \infty. \end{cases}$$

For example, $T : P \rightarrow \text{Isom}(\ell^2(P))$. Nica covariance implies

$$V_{x}^{*}V_{y} = (V_{x}^{*}V_{x})V_{x}^{*}V_{y}(V_{y}^{*}V_{y}) = V_{x}^{*}(V_{x}V_{x}^{*})(V_{y}V_{y}^{*})V_{y}$$

= $V_{x}^{*}(V_{x\vee y}V_{x\vee y}^{*})V_{y} = V_{x}^{*}V_{x}V_{x^{-1}(x\vee y)}V_{y^{-1}(x\vee y)}^{*}V_{y}^{*}V_{y}$
= $V_{x^{-1}(x\vee y)}V_{y^{-1}(x\vee y)}^{*},$

so $C^*(V) = \overline{\operatorname{span}}\{V_x V_y^* : x, y \in P\}.$

Example. $V : \mathbb{N}^2 \to \text{Isom}(H)$ is Nica covariant if and only if $V_{e_1} V_{e_2}^* = V_{e_2}^* V_{e_1}$.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem [Nica 1992, Laca-R 1996]. If (G, P) is suitably amenable, then $(\mathcal{T}(P), T) = \overline{\text{span}}\{T_x T_y^*\}$ is universal for Nica-covariant isometric representations of P.

Theorem [Nica 1992, Laca-R 1996]. If (G, P) is suitably amenable, then $(\mathcal{T}(P), T) = \overline{\text{span}}\{T_x T_y^*\}$ is universal for Nica-covariant isometric representations of P.

For $(G, P) = (\mathbb{F}_2, P)$ we recover the uniqueness of the Toeplitz-Cuntz algebra \mathcal{TO}_2 (Cuntz 1977).

Theorem [Nica 1992, Laca-R 1996]. If (G, P) is suitably amenable, then $(\mathcal{T}(P), T) = \overline{\text{span}}\{T_x T_y^*\}$ is universal for Nica-covariant isometric representations of P.

For $(G, P) = (\mathbb{F}_2, P)$ we recover the uniqueness of the Toeplitz-Cuntz algebra \mathcal{TO}_2 (Cuntz 1977).

The new work with Marcelo concerns the following semigroup recently studied by Cuntz:

A D F A 同 F A E F A E F A Q A

Example. $\mathbb{N} \rtimes \mathbb{N}^{\times}$ with (m, a)(n, b) = (m + an, ab).

Theorem [Nica 1992, Laca-R 1996]. If (G, P) is suitably amenable, then $(\mathcal{T}(P), T) = \overline{\text{span}}\{T_x T_y^*\}$ is universal for Nica-covariant isometric representations of P.

For $(G, P) = (\mathbb{F}_2, P)$ we recover the uniqueness of the Toeplitz-Cuntz algebra \mathcal{TO}_2 (Cuntz 1977).

The new work with Marcelo concerns the following semigroup recently studied by Cuntz:

Example. $\mathbb{N} \rtimes \mathbb{N}^{\times}$ with (m, a)(n, b) = (m + an, ab).

Question 1. Is $(\mathbb{Q} \rtimes \mathbb{Q}^*_+, \mathbb{N} \rtimes \mathbb{N}^{\times})$ quasi-lattice ordered?

We need to understand the partial order on $\mathbb{N}\rtimes\mathbb{N}^{\times}.$ We have

$$(m,a) \leq (k,c) \iff \exists (l,d) \in P \text{ with } (k,c) = (m+al,ad)$$

 $\iff a|c \text{ and } k \in m+a\mathbb{N}.$

<□ > < @ > < E > < E > E のQ @

We need to understand the partial order on $\mathbb{N} \rtimes \mathbb{N}^{\times}$. We have

$$(m,a) \leq (k,c) \iff \exists (l,d) \in P \text{ with } (k,c) = (m+al,ad) \ \iff a | c \text{ and } k \in m+a \mathbb{N}.$$

Proposition. ($\mathbb{Q} \rtimes \mathbb{Q}^*_+, \mathbb{N} \rtimes \mathbb{N}^{\times}$) is quasi-lattice ordered, and for $(m, a), (n, b) \in P = \mathbb{N} \rtimes \mathbb{N}^{\times}$ we have

 $(m,a) \lor (n,b) = \begin{cases} \infty & \text{unless } (a,b) \text{ divides } m-n, \\ (l,[a,b]) & \text{if it does,} \end{cases}$

where $I = \min((m + a\mathbb{N}) \cap (n + b\mathbb{N}))$ (which is non-empty if and only if (a, b) divides m - n).

We need to understand the partial order on $\mathbb{N} \rtimes \mathbb{N}^{\times}$. We have

$$(m,a) \leq (k,c) \iff \exists (l,d) \in P \text{ with } (k,c) = (m+al,ad) \ \iff a | c \text{ and } k \in m+a \mathbb{N}.$$

Proposition. ($\mathbb{Q} \rtimes \mathbb{Q}^*_+, \mathbb{N} \rtimes \mathbb{N}^{\times}$) is quasi-lattice ordered, and for $(m, a), (n, b) \in P = \mathbb{N} \rtimes \mathbb{N}^{\times}$ we have

 $(m,a) \lor (n,b) = \begin{cases} \infty & \text{unless } (a,b) \text{ divides } m-n, \\ (l,[a,b]) & \text{if it does,} \end{cases}$

where $I = \min((m + a\mathbb{N}) \cap (n + b\mathbb{N}))$ (which is non-empty if and only if (a, b) divides m - n).

(日) (日) (日) (日) (日) (日) (日)

In particular, $\mathcal{T}(\mathbb{N} \rtimes \mathbb{N}^{\times}) = \overline{\operatorname{span}}\{T_{(m,a)}T_{(n,b)}^*\}.$

We set
$$S = T_{(1,1)}$$
 and $V_a = T_{(0,a)}$. Then
(a) $V_a V_b = V_b V_a$ for all *a*, *b*, and $V_a^* V_b = V_b V_a^*$ for $(a, b) = 1$,
(b) $V_a S = S^a V_a$,
(c) $S^* V_a = S^{p-1} V_a S^*$, and
(d) $V_a^* S^l V_a = 0$ for $0 < l < a$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

We set
$$S = T_{(1,1)}$$
 and $V_a = T_{(0,a)}$. Then
(a) $V_a V_b = V_b V_a$ for all *a*, *b*, and $V_a^* V_b = V_b V_a^*$ for $(a, b) = 1$,
(b) $V_a S = S^a V_a$,
(c) $S^* V_a = S^{p-1} V_a S^*$, and
(d) $V_a^* S^l V_a = 0$ for $0 < l < a$.

We set
$$S = T_{(1,1)}$$
 and $V_a = T_{(0,a)}$. Then
(a) $V_a V_b = V_b V_a$ for all *a*, *b*, and $V_a^* V_b = V_b V_a^*$ for $(a, b) = 1$,
(b) $V_a S = S^a V_a$,
(c) $S^* V_a = S^{p-1} V_a S^*$, and
(d) $V_a^* S^I V_a = 0$ for $0 < I < a$.

(d) implies that $\{S^k V_a : 0 \le k < a\}$ is a Toeplitz-Cuntz family; in Cuntz's algebra, $SS^* = 1$ and $\{S^k V_a\}$ is a Cuntz family.

We set
$$S = T_{(1,1)}$$
 and $V_a = T_{(0,a)}$. Then
(a) $V_a V_b = V_b V_a$ for all *a*, *b*, and $V_a^* V_b = V_b V_a^*$ for $(a, b) = 1$,
(b) $V_a S = S^a V_a$,
(c) $S^* V_a = S^{p-1} V_a S^*$, and
(d) $V_a^* S^I V_a = 0$ for $0 < I < a$.

(d) implies that $\{S^k V_a : 0 \le k < a\}$ is a Toeplitz-Cuntz family; in Cuntz's algebra, $SS^* = 1$ and $\{S^k V_a\}$ is a Cuntz family.

(日) (日) (日) (日) (日) (日) (日)

Theorem. $(\mathcal{T}(\mathbb{N} \rtimes \mathbb{N}^{\times}), S, V_a) = \overline{\text{span}} \{S^m V_a V_b^* S^{*n}\}$ is universal for families satisfying (a)–(d).

We set
$$S = T_{(1,1)}$$
 and $V_a = T_{(0,a)}$. Then
(a) $V_a V_b = V_b V_a$ for all *a*, *b*, and $V_a^* V_b = V_b V_a^*$ for $(a, b) = 1$,
(b) $V_a S = S^a V_a$,
(c) $S^* V_a = S^{p-1} V_a S^*$, and
(d) $V_a^* S^I V_a = 0$ for $0 < I < a$.

(d) implies that $\{S^k V_a : 0 \le k < a\}$ is a Toeplitz-Cuntz family; in Cuntz's algebra, $SS^* = 1$ and $\{S^k V_a\}$ is a Cuntz family.

Theorem. $(\mathcal{T}(\mathbb{N} \rtimes \mathbb{N}^{\times}), S, V_a) = \overline{\text{span}}\{S^m V_a V_b^* S^{*n}\}$ is universal for families satisfying (a)–(d).

Corollary. There is a continuous action $\sigma : \mathbb{R} \to \operatorname{Aut} \mathcal{T}(\mathbb{N} \rtimes \mathbb{N}^{\times})$ such that $\sigma_t(S) = S$ and $\sigma_t(V_a) = a^{it}V_a$.

We have

$$\sigma_t(S^m V_a V_b^* S^{*n}) = a^{it} b^{-it} S^m V_a V_b^* S^{*n} = e^{(\log a - \log b)it} S^m V_a V_b^* S^{*n},$$

<□ > < @ > < E > < E > E のQ @

so all the spanning elements are analytic.

We have

$$\sigma_t(S^m V_a V_b^* S^{*n}) = a^{it} b^{-it} S^m V_a V_b^* S^{*n} = e^{(\log a - \log b)it} S^m V_a V_b^* S^{*n},$$

so all the spanning elements are analytic. The following lemma looks disarmingly easy:

Lemma. A state ϕ of $\mathcal{T}(\mathbb{N} \rtimes \mathbb{N}^{\times})$ is a KMS $_{\beta}$ state if and only if $\phi(S^m V_a V_b^* S^{*n}) = \begin{cases} 0 \text{ if } a \neq b \text{ or } m \not\equiv n \pmod{a} \\ a^{-\beta} \phi(S^{a^{-1}(m-n)}) \text{ if } a = b, m-n \in a\mathbb{N} \\ a^{-\beta} \phi(S^{*a^{-1}(n-m)}) \text{ if } a = b, n-m \in a\mathbb{N}. \end{cases}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

We have

$$\sigma_t(S^m V_a V_b^* S^{*n}) = a^{it} b^{-it} S^m V_a V_b^* S^{*n} = e^{(\log a - \log b)it} S^m V_a V_b^* S^{*n},$$

so all the spanning elements are analytic. The following lemma looks disarmingly easy:

Lemma. A state
$$\phi$$
 of $\mathcal{T}(\mathbb{N} \rtimes \mathbb{N}^{\times})$ is a KMS $_{\beta}$ state if and only if
 $\phi(S^m V_a V_b^* S^{*n}) = \begin{cases} 0 & \text{if } a \neq b \text{ or } m \not\equiv n \pmod{a} \\ a^{-\beta} \phi(S^{a^{-1}(m-n)}) & \text{if } a = b, m - n \in a\mathbb{N} \\ a^{-\beta} \phi(S^{*a^{-1}(n-m)}) & \text{if } a = b, n - m \in a\mathbb{N}. \end{cases}$

To prove it, though, we have to show that the condition implies

$$\phi((S^m V_a V_b^* S^{*n})(S^k V_c V_d^* S^{*l})) = a^{it} b^{-it} \phi((S^k V_c V_d^* S^{*l})(S^m V_a V_b^* S^{*n}))$$

and this involves being able to compute least upper bounds in $\mathbb{N}\rtimes\mathbb{N}^{\times}.$

Theorem (Laca–R) Consider the system ($C^*(\mathbb{N} \rtimes \mathbb{N}^{\times}), \sigma$) described above. Then:

For $\beta < 1$, there are no KMS_{β} states.

For $1 \leq \beta \leq 2$, there is a unique KMS_{β} state.

For $\beta > 2$, the simplex of KMS_{β} states is isomorphic to the simplex $P(\mathbb{T})$ of probability measures on the unit circle \mathbb{T} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Laca–R) Consider the system ($C^*(\mathbb{N} \rtimes \mathbb{N}^{\times}), \sigma$) described above. Then:

For $\beta < 1$, there are no KMS_{β} states.

For $1 \leq \beta \leq 2$, there is a unique KMS_{β} state.

For $\beta > 2$, the simplex of KMS_{β} states is isomorphic to the simplex $P(\mathbb{T})$ of probability measures on the unit circle \mathbb{T} .

An unusual feature is that the KMS_{β} states for $\beta > 2$ do not factor through an expectation onto a commutative subalgebra. They do factor through an expectation onto $C^*(V_aV_a^*, S)$: the elements $V_aV_a^*$ span a commutative algebra, but the KMS_{β} states for $\beta > 2$ need not vanish on powers of the generator *S*.

Theorem (Laca–R) Consider the system ($C^*(\mathbb{N} \rtimes \mathbb{N}^{\times}), \sigma$) described above. Then:

For $\beta < 1$, there are no KMS_{β} states.

For $1 \leq \beta \leq 2$, there is a unique KMS_{β} state.

For $\beta > 2$, the simplex of KMS_{β} states is isomorphic to the simplex $P(\mathbb{T})$ of probability measures on the unit circle \mathbb{T} .

An unusual feature is that the KMS_{β} states for $\beta > 2$ do not factor through an expectation onto a commutative subalgebra. They do factor through an expectation onto $C^*(V_aV_a^*, S)$: the elements $V_aV_a^*$ span a commutative algebra, but the KMS_{β} states for $\beta > 2$ need not vanish on powers of the generator *S*.

"We have spontaneous symmetry breaking as β increases through 2", but the circular symmetry which is being broken does not come from an action of \mathbb{T} on $\mathcal{T}(\mathbb{N} \rtimes \mathbb{N}^{\times})$.