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In this talk, a dynamical system consists of an action
α : R→ Aut A of the real line R on a unital C∗-algebra A.

In physical models, observables of the system are represented
by self-adjoint elements of A, and states of the system by
positive functionals of norm 1 on A: φ(a) is the expected value
of the observable a in the state φ (which is real because a = a∗

and φ ≥ 0).

The action α represents the time evolution of the system: the
observable a at time 0 moves to αt (a) at time t , or the state φ at
time 0 moves to φ ◦ αt .

In statistical physics, an important role is played by equilibrium
states, which are in particular invariant under the time evolution.
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In C∗-algebraic models (A,R, α), the equilibrium states are
called KMS states.

The set

Aa := {a ∈ A : t 7→ αt (a) extends to be analytic on C}

of analytic elements is a dense subalgebra of A. A state φ on A
is a KMS state at inverse temperature β if

φ(ab) = φ(bαiβ(a)) for all a,b ∈ Aa.

I KMS states are α-invariant.
I It suffices to check the KMSβ condition on a dense

subspace of Aa.
I The KMSβ states always form a simplex, and the extremal

KMSβ states are factor states.
I In a physical model we expect KMS states for most β.
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The Cuntz algebra On is the universal algebra generated by
{sj : 1 ≤ j ≤ n} satisfying s∗j sj = 1 =

∑n
j=1 sjs∗j . There is an

action α : R→ AutOn such that αt (sj) = eitsj .

The relation s∗j sj = 1 says that sj is an isometry, and then sjs∗j
is the range projection. Then 1 =

∑n
j=1 sjs∗j implies that these

range projections are mutually orthogonal — in particular,
s∗j sk = 0 for j 6= k . So every word in the sj and s∗k has the form

sµs∗ν := sµ1 · · · sµ|µ|(sν1 · · · sν|ν|)
∗,

and On = span{sµs∗ν}.

We have αt (sµs∗ν) = eit(|µ|−|ν|)sµs∗ν , which makes sense for
t ∈ C, so the sµs∗ν are analytic elements.
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If φ is a KMSβ state then φ is α-invariant, so φ(sµs∗ν) = 0 unless
|µ| = |ν|.

If |µ| = |ν|, then the KMSβ condition gives

φ(sµs∗ν) = φ(s∗ναiβ(sµ)) = ei2β|µ|φ(s∗νsµ) =

{
0 if ν 6= µ

e−β|µ| if ν = µ.

Lemma. φ is a KMSβ state iff φ(sµs∗ν) =

{
0 if ν 6= µ

e−β|µ| if ν = µ.
If φ is a KMSβ state on On then

1 = φ(1) =
n∑

j=1

φ(sjs∗j ) =
n∑

j=1

e−β = ne−β =⇒ β = log n.

So On has at most one KMSβ state, when β = log log n. Does it
have one?
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Define Φ : On → Oαn by Φ(a) =
∫ 1

0 α2πt (a) dt .

Oαn =
⋃∞

k=1 span{sµs∗ν : |µ| = |ν| = k} =
⋃∞

k=1 Mnk (C) carries a
unique tracial state τ .

Theorem (Olesen-Pedersen 1978). τ ◦ Φ is a KMSlog n state.

Laca-Exel, Laca-Neshveyev: Most of the above works equally
well for T On = C∗(sj : s∗j sj = 1 ≥

∑n
j=1 sjs∗j ). For each β there

is at most one KMSβ state. Applying a KMSβ state to the
relation 1 ≥

∑n
j=1 sjs∗j shows that β ≥ log n.

Consider Σ∗ =
⋃

k≥0{1, · · · ,n}k , and Sj on `2(Σ∗) defined by
Sjeµ = ejµ, giving a representation πS of T On. Then

φβ(a) = (1− ne−β)
∑
µ∈Σ∗

e−β|µ|(πS(a)eµ |eµ)

defines a KMSβ state on T On for every β > log n.
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Any cancellative semigroup has a Toeplitz representation T on
`2(P) such that Txey = exy . The Toeplitz algebra of P is
T (P) := C∗(Tx : x ∈ P) ⊂ B(`2(P)).

Examples. T (N) is generated by the unilateral shift, and is the
universal C∗-algebra generated by an isometry (Coburn 1967).
Roughly, the same is true when P is the positive cone in a
totally ordered abelian group (Douglas 1972, Murphy 1987).

T (N2) is generated by the isometries Te1 , Te2 , but is not
universal for such pairs: T satisfies the extra relation
Te1T ∗e2

= T ∗e2
Te1 .
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Consider a subsemigroup P of a group G which satisfies
P ∩ P−1 = {e} and which generates G.

Examples. (Z,N), (Z2,N2), (Q∗+,N×).

For x , y ∈ G we define x ≤ y ⇐⇒ x−1y ∈ P ⇐⇒ y ∈ xP, and
then ≤ is a partial order on G.

Def. [Nica, 92]. (G,P) is quasi-lattice ordered if every pair
x , y ∈ G with a common upper bound in P has a least upper
bound x ∨ y in P.

Examples. (1) In (Z2,N2) we have

(m1,m2) ∨ (n1,n2) = (max(m1,n1),max(m2,n2)).

(2) In (Q∗+,N×), m ≤ n⇐⇒ m|n, and m ∨ n = [m,n].
(3) F2 is the free group with generators a,b, and P = 〈a,b〉.
Then x ≤ y means that x is an initial segment of y , and the rest
of y has no factors of a−1 or b−1. Here x ∨ y =∞ often.
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(m1,m2) ∨ (n1,n2) = (max(m1,n1),max(m2,n2)).

(2) In (Q∗+,N×), m ≤ n⇐⇒ m|n, and m ∨ n = [m,n].
(3) F2 is the free group with generators a,b, and P = 〈a,b〉.
Then x ≤ y means that x is an initial segment of y , and the rest
of y has no factors of a−1 or b−1. Here x ∨ y =∞ often.



Consider a subsemigroup P of a group G which satisfies
P ∩ P−1 = {e} and which generates G.
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An isometric representation V : P → Isom(H) is Nica covariant
if

(VxV ∗x )(VyV ∗y ) =

{
Vx∨yV ∗x∨y if x ∨ y <∞
0 if x ∨ y =∞.

For example, T : P → Isom(`2(P)).

Nica covariance implies

V ∗x Vy = (V ∗x Vx )V ∗x Vy (V ∗y Vy ) = V ∗x (VxV ∗x )(VyV ∗y )Vy

= V ∗x (Vx∨yV ∗x∨y )Vy = V ∗x VxVx−1(x∨y)V
∗
y−1(x∨y)V

∗
y Vy

= Vx−1(x∨y)V
∗
y−1(x∨y),

so C∗(V ) = span{VxV ∗y : x , y ∈ P}.

Example. V : N2 → Isom(H) is Nica covariant if and only if
Ve1V ∗e2

= V ∗e2
Ve1 .
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Example. Nica-covariant representations of (F2, 〈a,b〉) are
given by pairs of isometries such that (SaS∗a)(SbS∗b) = 0, or
equivalently SaS∗a + SbS∗b.

Theorem [Nica 1992, Laca-R 1996]. If (G,P) is suitably
amenable, then (T (P),T ) = span{TxT ∗y } is universal for
Nica-covariant isometric representations of P.

For (G,P) = (F2,P) we recover the uniqueness of the
Toeplitz-Cuntz algebra T O2 (Cuntz 1977).

The new work with Marcelo concerns the following semigroup
recently studied by Cuntz:

Example. N o N× with (m,a)(n,b) = (m + an,ab).

Question 1. Is (Q o Q∗+,N o N×) quasi-lattice ordered?
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We need to understand the partial order on N o N×. We have

(m,a) ≤ (k , c)⇐⇒ ∃ (l ,d) ∈ P with (k , c) = (m + al ,ad)

⇐⇒ a|c and k ∈ m + aN.

Proposition. (Q o Q∗+,N o N×) is quasi-lattice ordered, and for
(m,a), (n,b) ∈ P = N o N× we have

(m,a) ∨ (n,b) =

{
∞ unless (a,b) divides m − n,
(l , [a,b]) if it does,

where l = min((m + aN) ∩ (n + bN)) (which is non-empty if and
only if (a,b) divides m − n).

In particular, T (N o N×) = span{T(m,a)T ∗(n,b)}.
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We set S = T(1,1) and Va = T(0,a). Then
(a) VaVb = VbVa for all a,b, and V ∗a Vb = VbV ∗a for (a,b) = 1,
(b) VaS = SaVa,
(c) S∗Va = Sp−1VaS∗, and
(d) V ∗a SlVa = 0 for 0 < l < a.

(a) says that V is a Nica-covariant representation of N×; (b)
says T(0,p)T(1,1) = T(p,p); (c) and (d) are Nica covariance for the
pairs x = (1,1), y = (0,p) and x = (0,p), y = (1,p).

(d) implies that {SkVa : 0 ≤ k < a} is a Toeplitz-Cuntz family; in
Cuntz’s algebra, SS∗ = 1 and {SkVa} is a Cuntz family.

Theorem. (T (N o N×),S,Va) = span{SmVaV ∗b S∗n} is
universal for families satisfying (a)–(d).

Corollary. There is a continuous action σ : R→ Aut T (N o N×)
such that σt (S) = S and σt (Va) = aitVa.
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We have

σt (SmVaV ∗b S∗n) = aitb−itSmVaV ∗b S∗n = e(log a−log b)itSmVaV ∗b S∗n,

so all the spanning elements are analytic.

The following lemma
looks disarmingly easy:

Lemma. A state φ of T (N o N×) is a KMSβ state if and only if

φ(SmVaV ∗b S∗n) =


0 if a 6= b or m 6≡ n (mod a)

a−βφ(Sa−1(m−n)) if a = b, m − n ∈ aN
a−βφ(S∗a

−1(n−m)) if a = b, n −m ∈ aN.

To prove it, though, we have to show that the condition implies

φ
(
(SmVaV ∗b S∗n)(SkVcV ∗d S∗l)

)
= aitb−itφ

(
(SkVcV ∗d S∗l)(SmVaV ∗b S∗n)

)
and this involves being able to compute least upper bounds in
N o N×.



We have

σt (SmVaV ∗b S∗n) = aitb−itSmVaV ∗b S∗n = e(log a−log b)itSmVaV ∗b S∗n,

so all the spanning elements are analytic.The following lemma
looks disarmingly easy:

Lemma. A state φ of T (N o N×) is a KMSβ state if and only if

φ(SmVaV ∗b S∗n) =


0 if a 6= b or m 6≡ n (mod a)

a−βφ(Sa−1(m−n)) if a = b, m − n ∈ aN
a−βφ(S∗a

−1(n−m)) if a = b, n −m ∈ aN.

To prove it, though, we have to show that the condition implies

φ
(
(SmVaV ∗b S∗n)(SkVcV ∗d S∗l)

)
= aitb−itφ

(
(SkVcV ∗d S∗l)(SmVaV ∗b S∗n)

)
and this involves being able to compute least upper bounds in
N o N×.



We have

σt (SmVaV ∗b S∗n) = aitb−itSmVaV ∗b S∗n = e(log a−log b)itSmVaV ∗b S∗n,

so all the spanning elements are analytic.The following lemma
looks disarmingly easy:

Lemma. A state φ of T (N o N×) is a KMSβ state if and only if

φ(SmVaV ∗b S∗n) =


0 if a 6= b or m 6≡ n (mod a)

a−βφ(Sa−1(m−n)) if a = b, m − n ∈ aN
a−βφ(S∗a

−1(n−m)) if a = b, n −m ∈ aN.

To prove it, though, we have to show that the condition implies

φ
(
(SmVaV ∗b S∗n)(SkVcV ∗d S∗l)

)
= aitb−itφ

(
(SkVcV ∗d S∗l)(SmVaV ∗b S∗n)

)
and this involves being able to compute least upper bounds in
N o N×.



Theorem (Laca–R) Consider the system (C∗(N o N×), σ)
described above. Then:
For β < 1, there are no KMSβ states.
For 1 ≤ β ≤ 2, there is a unique KMSβ state.
For β > 2, the simplex of KMSβ states is isomorphic to the
simplex P(T) of probability measures on the unit circle T.

An unusual feature is that the KMSβ states for β > 2 do not
factor through an expectation onto a commutative subalgebra.
They do factor through an expectation onto C∗(VaV ∗a ,S): the
elements VaV ∗a span a commutative algebra, but the KMSβ
states for β > 2 need not vanish on powers of the generator S.

“We have spontaneous symmetry breaking as β increases
through 2”, but the circular symmetry which is being broken
does not come from an action of T on T (N o N×).
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