Phase transitions in a number-theoretic dynamical system

Iain Raeburn
University of Wollongong
GPOTS June 2009

This talk is about joint work with Marcelo Laca.

In this talk, a dynamical system consists of an action $\alpha: \mathbb{R} \rightarrow$ Aut A of the real line \mathbb{R} on a unital C^{*}-algebra A.

In this talk, a dynamical system consists of an action $\alpha: \mathbb{R} \rightarrow$ Aut A of the real line \mathbb{R} on a unital C^{*}-algebra A.

In physical models, observables of the system are represented by self-adjoint elements of A, and states of the system by positive functionals of norm 1 on $A: \phi(a)$ is the expected value of the observable a in the state ϕ (which is real because $a=a^{*}$ and $\phi \geq 0$).

In this talk, a dynamical system consists of an action $\alpha: \mathbb{R} \rightarrow$ Aut A of the real line \mathbb{R} on a unital C^{*}-algebra A.

In physical models, observables of the system are represented by self-adjoint elements of A, and states of the system by positive functionals of norm 1 on $A: \phi(a)$ is the expected value of the observable a in the state ϕ (which is real because $a=a^{*}$ and $\phi \geq 0$).
The action α represents the time evolution of the system: the observable a at time 0 moves to $\alpha_{t}(a)$ at time t, or the state ϕ at time 0 moves to $\phi \circ \alpha_{t}$.

In this talk, a dynamical system consists of an action $\alpha: \mathbb{R} \rightarrow$ Aut A of the real line \mathbb{R} on a unital C^{*}-algebra A.

In physical models, observables of the system are represented by self-adjoint elements of A, and states of the system by positive functionals of norm 1 on $A: \phi(a)$ is the expected value of the observable a in the state ϕ (which is real because $a=a^{*}$ and $\phi \geq 0$).

The action α represents the time evolution of the system: the observable a at time 0 moves to $\alpha_{t}(a)$ at time t, or the state ϕ at time 0 moves to $\phi \circ \alpha_{t}$.

In statistical physics, an important role is played by equilibrium states, which are in particular invariant under the time evolution.

In C^{*}-algebraic models (A, \mathbb{R}, α), the equilibrium states are called KMS states.

In C^{*}-algebraic models (A, \mathbb{R}, α), the equilibrium states are called KMS states. The set

$$
A^{a}:=\left\{\boldsymbol{a} \in A: t \mapsto \alpha_{t}(a) \text { extends to be analytic on } \mathbb{C}\right\}
$$

of analytic elements is a dense subalgebra of A. A state ϕ on A is a KMS state at inverse temperature β if

$$
\phi(a b)=\phi\left(b \alpha_{i \beta}(a)\right) \text { for all } a, b \in A^{a} .
$$

In C^{*}-algebraic models (A, \mathbb{R}, α), the equilibrium states are called KMS states. The set

$$
A^{a}:=\left\{\boldsymbol{a} \in A: t \mapsto \alpha_{t}(a) \text { extends to be analytic on } \mathbb{C}\right\}
$$

of analytic elements is a dense subalgebra of A. A state ϕ on A is a KMS state at inverse temperature β if

$$
\phi(a b)=\phi\left(b \alpha_{i \beta}(a)\right) \text { for all } a, b \in A^{a} .
$$

- KMS states are α-invariant.

In C^{*}-algebraic models (A, \mathbb{R}, α), the equilibrium states are called KMS states. The set

$$
A^{a}:=\left\{\boldsymbol{a} \in A: t \mapsto \alpha_{t}(a) \text { extends to be analytic on } \mathbb{C}\right\}
$$

of analytic elements is a dense subalgebra of A. A state ϕ on A is a $K M S$ state at inverse temperature β if

$$
\phi(a b)=\phi\left(b \alpha_{i \beta}(a)\right) \text { for all } a, b \in A^{a} .
$$

- KMS states are α-invariant.
- It suffices to check the KMS_{β} condition on a dense subspace of A^{a}.

In C^{*}-algebraic models (A, \mathbb{R}, α), the equilibrium states are called KMS states. The set

$$
A^{a}:=\left\{\boldsymbol{a} \in A: t \mapsto \alpha_{t}(a) \text { extends to be analytic on } \mathbb{C}\right\}
$$

of analytic elements is a dense subalgebra of A. A state ϕ on A is a KMS state at inverse temperature β if

$$
\phi(a b)=\phi\left(b \alpha_{i \beta}(a)\right) \text { for all } a, b \in A^{a} .
$$

- KMS states are α-invariant.
- It suffices to check the KMS_{β} condition on a dense subspace of A^{a}.
- The KMS_{β} states always form a simplex, and the extremal KMS_{β} states are factor states.

In C^{*}-algebraic models (A, \mathbb{R}, α), the equilibrium states are called KMS states. The set

$$
A^{a}:=\left\{\boldsymbol{a} \in A: t \mapsto \alpha_{t}(a) \text { extends to be analytic on } \mathbb{C}\right\}
$$

of analytic elements is a dense subalgebra of A. A state ϕ on A is a KMS state at inverse temperature β if

$$
\phi(a b)=\phi\left(b \alpha_{i \beta}(a)\right) \text { for all } a, b \in A^{a} .
$$

- KMS states are α-invariant.
- It suffices to check the KMS_{β} condition on a dense subspace of A^{a}.
- The KMS_{β} states always form a simplex, and the extremal KMS_{β} states are factor states.
- In a physical model we expect KMS states for most β.

The Cuntz algebra \mathcal{O}_{n} is the universal algebra generated by $\left\{s_{j}: 1 \leq j \leq n\right\}$ satisfying $s_{j}^{*} s_{j}=1=\sum_{j=1}^{n} s_{j} s_{j}^{*}$. There is an action $\alpha: \mathbb{R} \rightarrow$ Aut \mathcal{O}_{n} such that $\alpha_{t}\left(s_{j}\right)=e^{i t} s_{j}$.

The Cuntz algebra \mathcal{O}_{n} is the universal algebra generated by $\left\{s_{j}: 1 \leq j \leq n\right\}$ satisfying $s_{j}^{*} s_{j}=1=\sum_{j=1}^{n} s_{j} s_{j}^{*}$. There is an action $\alpha: \mathbb{R} \rightarrow$ Aut \mathcal{O}_{n} such that $\alpha_{t}\left(s_{j}\right)=e^{i t} s_{j}$.
The relation $s_{j}^{*} s_{j}=1$ says that s_{j} is an isometry, and then $s_{j} s_{j}^{*}$ is the range projection.

The Cuntz algebra \mathcal{O}_{n} is the universal algebra generated by $\left\{s_{j}: 1 \leq j \leq n\right\}$ satisfying $s_{j}^{*} s_{j}=1=\sum_{j=1}^{n} s_{j} s_{j}^{*}$. There is an action $\alpha: \mathbb{R} \rightarrow$ Aut \mathcal{O}_{n} such that $\alpha_{t}\left(s_{j}\right)=e^{i t} s_{j}$.
The relation $s_{j}^{*} s_{j}=1$ says that s_{j} is an isometry, and then $s_{j} s_{j}^{*}$ is the range projection. Then $1=\sum_{j=1}^{n} s_{j} s_{j}^{*}$ implies that these range projections are mutually orthogonal - in particular, $s_{j}^{*} s_{k}=0$ for $j \neq k$.

The Cuntz algebra \mathcal{O}_{n} is the universal algebra generated by $\left\{s_{j}: 1 \leq j \leq n\right\}$ satisfying $s_{j}^{*} s_{j}=1=\sum_{j=1}^{n} s_{j} s_{j}^{*}$. There is an action $\alpha: \mathbb{R} \rightarrow$ Aut \mathcal{O}_{n} such that $\alpha_{t}\left(s_{j}\right)=e^{i t} s_{j}$.
The relation $s_{j}^{*} s_{j}=1$ says that s_{j} is an isometry, and then $s_{j} s_{j}^{*}$ is the range projection. Then $1=\sum_{j=1}^{n} s_{j} s_{j}^{*}$ implies that these range projections are mutually orthogonal - in particular, $s_{j}^{*} s_{k}=0$ for $j \neq k$. So every word in the s_{j} and s_{k}^{*} has the form

$$
s_{\mu} s_{\nu}^{*}:=s_{\mu_{1}} \cdots s_{\mu_{|\mu|}}\left(s_{\nu_{1}} \cdots s_{\nu_{|\nu|} \mid}\right)^{*}
$$

and $\mathcal{O}_{n}=\overline{\operatorname{span}}\left\{s_{\mu} s_{\nu}^{*}\right\}$.

The Cuntz algebra \mathcal{O}_{n} is the universal algebra generated by $\left\{s_{j}: 1 \leq j \leq n\right\}$ satisfying $s_{j}^{*} s_{j}=1=\sum_{j=1}^{n} s_{j} s_{j}^{*}$. There is an action $\alpha: \mathbb{R} \rightarrow$ Aut \mathcal{O}_{n} such that $\alpha_{t}\left(s_{j}\right)=e^{i t} \boldsymbol{s}_{j}$.
The relation $s_{j}^{*} s_{j}=1$ says that s_{j} is an isometry, and then $s_{j} s_{j}^{*}$ is the range projection. Then $1=\sum_{j=1}^{n} s_{j} s_{j}^{*}$ implies that these range projections are mutually orthogonal - in particular, $s_{j}^{*} s_{k}=0$ for $j \neq k$. So every word in the s_{j} and s_{k}^{*} has the form

$$
s_{\mu} s_{\nu}^{*}:=s_{\mu_{1}} \cdots s_{\mu_{|\mu|} \mid}\left(s_{\nu_{1}} \cdots s_{\nu_{| | \nu}}\right)^{*},
$$

and $\mathcal{O}_{n}=\overline{\operatorname{span}}\left\{s_{\mu} s_{\nu}^{*}\right\}$.
We have $\alpha_{t}\left(s_{\mu} s_{\nu}^{*}\right)=e^{i t(|\mu|-|\nu|)} s_{\mu} s_{\nu}^{*}$, which makes sense for $t \in \mathbb{C}$, so the $s_{\mu} s_{\nu}^{*}$ are analytic elements.

If ϕ is a KMS_{β} state then ϕ is α-invariant, so $\phi\left(s_{\mu} s_{\nu}^{*}\right)=0$ unless $|\mu|=|\nu|$.

If ϕ is a KMS_{β} state then ϕ is α-invariant, so $\phi\left(s_{\mu} s_{\nu}^{*}\right)=0$ unless $|\mu|=|\nu|$. If $|\mu|=|\nu|$, then the KMS_{β} condition gives

$$
\phi\left(s_{\mu} s_{\nu}^{*}\right)=\phi\left(s_{\nu}^{*} \alpha_{i \beta}\left(s_{\mu}\right)\right)=e^{i^{2} \beta|\mu|} \phi\left(s_{\nu}^{*} s_{\mu}\right)= \begin{cases}0 & \text { if } \nu \neq \mu \\ e^{-\beta|\mu|} & \text { if } \nu=\mu\end{cases}
$$

If ϕ is a KMS_{β} state then ϕ is α-invariant, so $\phi\left(s_{\mu} s_{\nu}^{*}\right)=0$ unless $|\mu|=|\nu|$. If $|\mu|=|\nu|$, then the KMS_{β} condition gives

$$
\phi\left(s_{\mu} s_{\nu}^{*}\right)=\phi\left(s_{\nu}^{*} \alpha_{i \beta}\left(s_{\mu}\right)\right)=e^{i^{2} \beta|\mu|} \phi\left(s_{\nu}^{*} s_{\mu}\right)= \begin{cases}0 & \text { if } \nu \neq \mu \\ e^{-\beta|\mu|} & \text { if } \nu=\mu\end{cases}
$$

Lemma. ϕ is a KMS_{β} state iff $\phi\left(s_{\mu} s_{\nu}^{*}\right)= \begin{cases}0 & \text { if } \nu \neq \mu \\ e^{-\beta|\mu|} & \text { if } \nu=\mu .\end{cases}$

If ϕ is a KMS_{β} state then ϕ is α-invariant, so $\phi\left(s_{\mu} s_{\nu}^{*}\right)=0$ unless $|\mu|=|\nu|$. If $|\mu|=|\nu|$, then the KMS_{β} condition gives

$$
\phi\left(s_{\mu} s_{\nu}^{*}\right)=\phi\left(s_{\nu}^{*} \alpha_{i \beta}\left(s_{\mu}\right)\right)=e^{i^{2} \beta|\mu|} \phi\left(s_{\nu}^{*} s_{\mu}\right)= \begin{cases}0 & \text { if } \nu \neq \mu \\ e^{-\beta|\mu|} & \text { if } \nu=\mu\end{cases}
$$

Lemma. ϕ is a KMS_{β} state iff $\phi\left(s_{\mu} s_{\nu}^{*}\right)= \begin{cases}0 & \text { if } \nu \neq \mu \\ e^{-\beta|\mu|} & \text { if } \nu=\mu .\end{cases}$
If ϕ is a KMS_{β} state on \mathcal{O}_{n} then

$$
1=\phi(1)=\sum_{j=1}^{n} \phi\left(s_{j} s_{j}^{*}\right)=\sum_{j=1}^{n} e^{-\beta}=n e^{-\beta} \Longrightarrow \beta=\log n .
$$

If ϕ is a KMS_{β} state then ϕ is α-invariant, so $\phi\left(s_{\mu} s_{\nu}^{*}\right)=0$ unless $|\mu|=|\nu|$. If $|\mu|=|\nu|$, then the KMS_{β} condition gives

$$
\phi\left(s_{\mu} s_{\nu}^{*}\right)=\phi\left(s_{\nu}^{*} \alpha_{i \beta}\left(s_{\mu}\right)\right)=e^{i^{2} \beta|\mu|} \phi\left(s_{\nu}^{*} s_{\mu}\right)= \begin{cases}0 & \text { if } \nu \neq \mu \\ e^{-\beta|\mu|} & \text { if } \nu=\mu\end{cases}
$$

Lemma. ϕ is a KMS_{β} state iff $\phi\left(s_{\mu} s_{\nu}^{*}\right)= \begin{cases}0 & \text { if } \nu \neq \mu \\ e^{-\beta|\mu|} & \text { if } \nu=\mu .\end{cases}$
If ϕ is a KMS_{β} state on \mathcal{O}_{n} then

$$
1=\phi(1)=\sum_{j=1}^{n} \phi\left(s_{j} s_{j}^{*}\right)=\sum_{j=1}^{n} e^{-\beta}=n e^{-\beta} \Longrightarrow \beta=\log n .
$$

So \mathcal{O}_{n} has at most one KMS_{β} state, when $\beta=\log \log n$. Does it have one?

Define $\Phi: \mathcal{O}_{n} \rightarrow \mathcal{O}_{n}^{\alpha}$ by $\Phi(a)=\int_{0}^{1} \alpha_{2 \pi t}(a) d t$.

Define $\Phi: \mathcal{O}_{n} \rightarrow \mathcal{O}_{n}^{\alpha}$ by $\Phi(a)=\int_{0}^{1} \alpha_{2 \pi t}(a) d t$.
$\mathcal{O}_{n}^{\alpha}=\overline{\bigcup_{k=1}^{\infty} \operatorname{span}\left\{s_{\mu} s_{\nu}^{*}:|\mu|=|\nu|=k\right\}}=\overline{\bigcup_{k=1}^{\infty} M_{n^{k}}(\mathbb{C})}$ carries a unique tracial state τ.

Define $\Phi: \mathcal{O}_{n} \rightarrow \mathcal{O}_{n}^{\alpha}$ by $\Phi(a)=\int_{0}^{1} \alpha_{2 \pi t}(a) d t$.
$\mathcal{O}_{n}^{\alpha}=\overline{\bigcup_{k=1}^{\infty} \operatorname{span}\left\{s_{\mu} s_{\nu}^{*}:|\mu|=|\nu|=k\right\}}=\overline{\bigcup_{k=1}^{\infty} M_{n^{k}}(\mathbb{C})}$ carries a unique tracial state τ.

Theorem (Olesen-Pedersen 1978). $\tau \circ \Phi$ is a $K M S_{\log n}$ state.

Define $\Phi: \mathcal{O}_{n} \rightarrow \mathcal{O}_{n}^{\alpha}$ by $\Phi(a)=\int_{0}^{1} \alpha_{2 \pi t}(a) d t$.
$\mathcal{O}_{n}^{\alpha}=\overline{\bigcup_{k=1}^{\infty} \operatorname{span}\left\{s_{\mu} s_{\nu}^{*}:|\mu|=|\nu|=k\right\}}=\overline{\bigcup_{k=1}^{\infty} M_{n^{k}}(\mathbb{C})}$ carries a unique tracial state τ.

Theorem (Olesen-Pedersen 1978). $\tau \circ \Phi$ is a $K M S_{\log n}$ state.

Laca-Exel, Laca-Neshveyev: Most of the above works equally well for $\mathcal{T} \mathcal{O}_{n}=C^{*}\left(s_{j}: s_{j}^{*} s_{j}=1 \geq \sum_{j=1}^{n} s_{j} s_{j}^{*}\right)$. For each β there is at most one KMS_{β} state.

Define $\Phi: \mathcal{O}_{n} \rightarrow \mathcal{O}_{n}^{\alpha}$ by $\Phi(a)=\int_{0}^{1} \alpha_{2 \pi t}(a) d t$.
$\mathcal{O}_{n}^{\alpha}=\overline{\bigcup_{k=1}^{\infty} \operatorname{span}\left\{s_{\mu} s_{\nu}^{*}:|\mu|=|\nu|=k\right\}}=\overline{\bigcup_{k=1}^{\infty} M_{n^{k}}(\mathbb{C})}$ carries a unique tracial state τ.

Theorem (Olesen-Pedersen 1978). $\tau \circ \Phi$ is a $K M S_{\log n}$ state.

Laca-Exel, Laca-Neshveyev: Most of the above works equally well for $\mathcal{T} \mathcal{O}_{n}=C^{*}\left(s_{j}: s_{j}^{*} s_{j}=1 \geq \sum_{j=1}^{n} s_{j} s_{j}^{*}\right)$. For each β there is at most one KMS_{β} state. Applying a KMS_{β} state to the relation $1 \geq \sum_{j=1}^{n} s_{j} s_{j}^{*}$ shows that $\beta \geq \log n$.

Define $\Phi: \mathcal{O}_{n} \rightarrow \mathcal{O}_{n}^{\alpha}$ by $\Phi(a)=\int_{0}^{1} \alpha_{2 \pi t}(a) d t$.
$\mathcal{O}_{n}^{\alpha}=\overline{\bigcup_{k=1}^{\infty} \operatorname{span}\left\{s_{\mu} s_{\nu}^{*}:|\mu|=|\nu|=k\right\}}=\overline{\bigcup_{k=1}^{\infty} M_{n^{k}}(\mathbb{C})}$ carries a unique tracial state τ.

Theorem (Olesen-Pedersen 1978). $\tau \circ \Phi$ is a $K M S_{\log n}$ state.

Laca-Exel, Laca-Neshveyev: Most of the above works equally well for $\mathcal{T} \mathcal{O}_{n}=C^{*}\left(s_{j}: s_{j}^{*} s_{j}=1 \geq \sum_{j=1}^{n} s_{j} s_{j}^{*}\right)$. For each β there is at most one KMS_{β} state. Applying a KMS_{β} state to the relation $1 \geq \sum_{j=1}^{n} s_{j} s_{j}^{*}$ shows that $\beta \geq \log n$.
Consider $\Sigma^{*}=\bigcup_{k \geq 0}\{1, \cdots, n\}^{k}$, and S_{j} on $\ell^{2}\left(\Sigma^{*}\right)$ defined by $S_{j} e_{\mu}=e_{j \mu}$, giving a representation π_{S} of $\mathcal{T} \mathcal{O}_{n}$.

Define $\Phi: \mathcal{O}_{n} \rightarrow \mathcal{O}_{n}^{\alpha}$ by $\Phi(a)=\int_{0}^{1} \alpha_{2 \pi t}(a) d t$.
$\mathcal{O}_{n}^{\alpha}=\overline{\bigcup_{k=1}^{\infty} \operatorname{span}\left\{s_{\mu} s_{\nu}^{*}:|\mu|=|\nu|=k\right\}}=\overline{\bigcup_{k=1}^{\infty} M_{n^{k}}(\mathbb{C})}$ carries a unique tracial state τ.
Theorem (Olesen-Pedersen 1978). $\tau \circ \Phi$ is a $K M S_{\log n}$ state.
Laca-Exel, Laca-Neshveyev: Most of the above works equally well for $\mathcal{T} \mathcal{O}_{n}=C^{*}\left(s_{j}: s_{j}^{*} s_{j}=1 \geq \sum_{j=1}^{n} s_{j} s_{j}^{*}\right)$. For each β there is at most one KMS_{β} state. Applying a KMS_{β} state to the relation $1 \geq \sum_{j=1}^{n} s_{j} s_{j}^{*}$ shows that $\beta \geq \log n$.
Consider $\Sigma^{*}=\bigcup_{k \geq 0}\{1, \cdots, n\}^{k}$, and S_{j} on $\ell^{2}\left(\Sigma^{*}\right)$ defined by $S_{j} e_{\mu}=e_{j \mu}$, giving à representation π_{S} of $\mathcal{T} \mathcal{O}_{n}$. Then

$$
\phi_{\beta}(a)=\left(1-n e^{-\beta}\right) \sum_{\mu \in \Sigma^{*}} e^{-\beta|\mu|}\left(\pi_{S}(a) e_{\mu} \mid e_{\mu}\right)
$$

defines a KMS_{β} state on $\mathcal{T} \mathcal{O}_{n}$ for every $\beta>\log n$.

Any cancellative semigroup has a Toeplitz representation T on $\ell^{2}(P)$ such that $T_{x} e_{y}=e_{x y}$. The Toeplitz algebra of P is $\mathcal{T}(P):=C^{*}\left(T_{x}: x \in P\right) \subset B\left(\ell^{2}(P)\right)$.

Any cancellative semigroup has a Toeplitz representation T on $\ell^{2}(P)$ such that $T_{x} e_{y}=e_{x y}$. The Toeplitz algebra of P is $\mathcal{T}(P):=C^{*}\left(T_{x}: x \in P\right) \subset B\left(\ell^{2}(P)\right)$.

Examples. $\mathcal{T}(\mathbb{N})$ is generated by the unilateral shift, and is the universal C^{*}-algebra generated by an isometry (Coburn 1967).

Any cancellative semigroup has a Toeplitz representation T on $\ell^{2}(P)$ such that $T_{x} e_{y}=e_{x y}$. The Toeplitz algebra of P is $\mathcal{T}(P):=C^{*}\left(T_{x}: x \in P\right) \subset B\left(\ell^{2}(P)\right)$.

Examples. $\mathcal{T}(\mathbb{N})$ is generated by the unilateral shift, and is the universal C^{*}-algebra generated by an isometry (Coburn 1967). Roughly, the same is true when P is the positive cone in a totally ordered abelian group (Douglas 1972, Murphy 1987).

Any cancellative semigroup has a Toeplitz representation T on $\ell^{2}(P)$ such that $T_{x} e_{y}=e_{x y}$. The Toeplitz algebra of P is $\mathcal{T}(P):=C^{*}\left(T_{x}: x \in P\right) \subset B\left(\ell^{2}(P)\right)$.
Examples. $\mathcal{T}(\mathbb{N})$ is generated by the unilateral shift, and is the universal C^{*}-algebra generated by an isometry (Coburn 1967). Roughly, the same is true when P is the positive cone in a totally ordered abelian group (Douglas 1972, Murphy 1987).
$\mathcal{T}\left(\mathbb{N}^{2}\right)$ is generated by the isometries $T_{e_{1}}, T_{e_{2}}$, but is not universal for such pairs: T satisfies the extra relation $T_{e_{1}} T_{e_{2}}^{*}=T_{e_{2}}^{*} T_{e_{1}}$.

Consider a subsemigroup P of a group G which satisfies $P \cap P^{-1}=\{e\}$ and which generates G.
Examples. $(\mathbb{Z}, \mathbb{N}),\left(\mathbb{Z}^{2}, \mathbb{N}^{2}\right),\left(\mathbb{Q}_{+}^{*}, \mathbb{N}^{\times}\right)$.

Consider a subsemigroup P of a group G which satisfies $P \cap P^{-1}=\{e\}$ and which generates G.
Examples. $(\mathbb{Z}, \mathbb{N}),\left(\mathbb{Z}^{2}, \mathbb{N}^{2}\right),\left(\mathbb{Q}_{+}^{*}, \mathbb{N}^{\times}\right)$.
For $x, y \in G$ we define $x \leq y \Longleftrightarrow x^{-1} y \in P \Longleftrightarrow y \in x P$, and then \leq is a partial order on G.
Def. [Nica, 92]. (G, P) is quasi-lattice ordered if every pair $x, y \in G$ with a common upper bound in P has a least upper bound $x \vee y$ in P.

Consider a subsemigroup P of a group G which satisfies $P \cap P^{-1}=\{e\}$ and which generates G.
Examples. $(\mathbb{Z}, \mathbb{N}),\left(\mathbb{Z}^{2}, \mathbb{N}^{2}\right),\left(\mathbb{Q}_{+}^{*}, \mathbb{N}^{\times}\right)$.
For $x, y \in G$ we define $x \leq y \Longleftrightarrow x^{-1} y \in P \Longleftrightarrow y \in x P$, and then \leq is a partial order on G.
Def. [Nica, 92]. (G, P) is quasi-lattice ordered if every pair $x, y \in G$ with a common upper bound in P has a least upper bound $x \vee y$ in P.

Examples. (1) $\ln \left(\mathbb{Z}^{2}, \mathbb{N}^{2}\right)$ we have

$$
\left(m_{1}, m_{2}\right) \vee\left(n_{1}, n_{2}\right)=\left(\max \left(m_{1}, n_{1}\right), \max \left(m_{2}, n_{2}\right)\right)
$$

Consider a subsemigroup P of a group G which satisfies $P \cap P^{-1}=\{e\}$ and which generates G.
Examples. $(\mathbb{Z}, \mathbb{N}),\left(\mathbb{Z}^{2}, \mathbb{N}^{2}\right),\left(\mathbb{Q}_{+}^{*}, \mathbb{N}^{\times}\right)$.
For $x, y \in G$ we define $x \leq y \Longleftrightarrow x^{-1} y \in P \Longleftrightarrow y \in x P$, and then \leq is a partial order on G.
Def. [Nica, 92]. (G, P) is quasi-lattice ordered if every pair $x, y \in G$ with a common upper bound in P has a least upper bound $x \vee y$ in P.
Examples. (1) In $\left(\mathbb{Z}^{2}, \mathbb{N}^{2}\right)$ we have

$$
\left(m_{1}, m_{2}\right) \vee\left(n_{1}, n_{2}\right)=\left(\max \left(m_{1}, n_{1}\right), \max \left(m_{2}, n_{2}\right)\right) .
$$

(2) $\ln \left(\mathbb{Q}_{+}^{*}, \mathbb{N}^{\times}\right), m \leq n \Longleftrightarrow m \mid n$, and $m \vee n=[m, n]$.

Consider a subsemigroup P of a group G which satisfies $P \cap P^{-1}=\{e\}$ and which generates G.
Examples. $(\mathbb{Z}, \mathbb{N}),\left(\mathbb{Z}^{2}, \mathbb{N}^{2}\right),\left(\mathbb{Q}_{+}^{*}, \mathbb{N}^{\times}\right)$.
For $x, y \in G$ we define $x \leq y \Longleftrightarrow x^{-1} y \in P \Longleftrightarrow y \in x P$, and then \leq is a partial order on G.
Def. [Nica, 92]. (G, P) is quasi-lattice ordered if every pair $x, y \in G$ with a common upper bound in P has a least upper bound $x \vee y$ in P.
Examples. (1) $\ln \left(\mathbb{Z}^{2}, \mathbb{N}^{2}\right)$ we have

$$
\left(m_{1}, m_{2}\right) \vee\left(n_{1}, n_{2}\right)=\left(\max \left(m_{1}, n_{1}\right), \max \left(m_{2}, n_{2}\right)\right)
$$

(2) $\ln \left(\mathbb{Q}_{+}^{*}, \mathbb{N}^{\times}\right), m \leq n \Longleftrightarrow m \mid n$, and $m \vee n=[m, n]$.
(3) \mathbb{F}_{2} is the free group with generators a, b, and $P=\langle a, b\rangle$.

Then $x \leq y$ means that x is an initial segment of y, and the rest of y has no factors of a^{-1} or b^{-1}. Here $x \vee y=\infty$ often.

An isometric representation $V: P \rightarrow \operatorname{Isom}(H)$ is Nica covariant if

$$
\left(V_{x} V_{x}^{*}\right)\left(V_{y} V_{y}^{*}\right)= \begin{cases}V_{x \vee y} V_{x \vee y}^{*} & \text { if } x \vee y<\infty \\ 0 & \text { if } x \vee y=\infty\end{cases}
$$

For example, $T: P \rightarrow \operatorname{Isom}\left(\ell^{2}(P)\right)$.

An isometric representation $V: P \rightarrow \operatorname{Isom}(H)$ is Nica covariant if

$$
\left(V_{x} V_{x}^{*}\right)\left(V_{y} V_{y}^{*}\right)= \begin{cases}V_{x \vee y} V_{x \vee y}^{*} & \text { if } x \vee y<\infty \\ 0 & \text { if } x \vee y=\infty\end{cases}
$$

For example, $T: P \rightarrow$ Isom $\left(\ell^{2}(P)\right)$. Nica covariance implies

$$
\begin{aligned}
V_{x}^{*} V_{y} & =\left(V_{x}^{*} V_{x}\right) V_{x}^{*} V_{y}\left(V_{y}^{*} V_{y}\right)=V_{x}^{*}\left(V_{x} V_{x}^{*}\right)\left(V_{y} V_{y}^{*}\right) V_{y} \\
& =V_{x}^{*}\left(V_{x \vee y} V_{x \vee y}^{*}\right) V_{y}=V_{x}^{*} V_{x} V_{x^{-1}(x \vee y)} V_{y^{-1}(x \vee y)}^{*} V_{y}^{*} V_{y} \\
& =V_{x-1(x \vee y)} V_{y^{-1}(x \vee y)}^{*}
\end{aligned}
$$

so $C^{*}(V)=\overline{\operatorname{span}}\left\{V_{x} V_{y}^{*}: x, y \in P\right\}$.

An isometric representation $V: P \rightarrow \operatorname{Isom}(H)$ is Nica covariant if

$$
\left(V_{x} V_{x}^{*}\right)\left(V_{y} V_{y}^{*}\right)= \begin{cases}V_{x \vee y} V_{x \vee y}^{*} & \text { if } x \vee y<\infty \\ 0 & \text { if } x \vee y=\infty\end{cases}
$$

For example, $T: P \rightarrow$ Isom $\left(\ell^{2}(P)\right)$. Nica covariance implies

$$
\begin{aligned}
V_{x}^{*} V_{y} & =\left(V_{x}^{*} V_{x}\right) V_{x}^{*} V_{y}\left(V_{y}^{*} V_{y}\right)=V_{x}^{*}\left(V_{x} V_{x}^{*}\right)\left(V_{y} V_{y}^{*}\right) V_{y} \\
& =V_{x}^{*}\left(V_{x \vee y} V_{x \vee y}^{*}\right) V_{y}=V_{x}^{*} V_{x} V_{x^{-1}(x \vee y)} V_{y^{-1}(x \vee y)}^{*} V_{y}^{*} V_{y} \\
& =V_{x^{-1}(x \vee y)} V_{y^{-1}(x \vee y)}^{*}
\end{aligned}
$$

so $C^{*}(V)=\overline{\operatorname{span}}\left\{V_{x} V_{y}^{*}: x, y \in P\right\}$.
Example. $V: \mathbb{N}^{2} \rightarrow \operatorname{Isom}(H)$ is Nica covariant if and only if $V_{e_{1}} V_{e_{2}}^{*}=V_{e_{2}}^{*} V_{e_{1}}$.

Example. Nica-covariant representations of $\left(\mathbb{F}_{2},\langle a, b\rangle\right)$ are given by pairs of isometries such that $\left(S_{a} S_{a}^{*}\right)\left(S_{b} S_{b}^{*}\right)=0$, or equivalently $S_{a} S_{a}^{*}+S_{b} S_{b}^{*}$.

Example. Nica-covariant representations of $\left(\mathbb{F}_{2},\langle a, b\rangle\right)$ are given by pairs of isometries such that $\left(S_{a} S_{a}^{*}\right)\left(S_{b} S_{b}^{*}\right)=0$, or equivalently $S_{a} S_{a}^{*}+S_{b} S_{b}^{*}$.
Theorem [Nica 1992, Laca-R 1996]. If (G, P) is suitably amenable, then $(\mathcal{T}(P), T)=\overline{\operatorname{span}}\left\{T_{x} T_{y}^{*}\right\}$ is universal for Nica-covariant isometric representations of P.

Example. Nica-covariant representations of $\left(\mathbb{F}_{2},\langle a, b\rangle\right)$ are given by pairs of isometries such that $\left(S_{a} S_{a}^{*}\right)\left(S_{b} S_{b}^{*}\right)=0$, or equivalently $S_{a} S_{a}^{*}+S_{b} S_{b}^{*}$.
Theorem [Nica 1992, Laca-R 1996]. If (G, P) is suitably amenable, then $(\mathcal{T}(P), T)=\overline{\operatorname{span}}\left\{T_{x} T_{y}^{*}\right\}$ is universal for Nica-covariant isometric representations of P.

For $(G, P)=\left(\mathbb{F}_{2}, P\right)$ we recover the uniqueness of the Toeplitz-Cuntz algebra $\mathcal{T} \mathcal{O}_{2} \quad$ (Cuntz 1977).

Example. Nica-covariant representations of $\left(\mathbb{F}_{2},\langle a, b\rangle\right)$ are given by pairs of isometries such that $\left(S_{a} S_{a}^{*}\right)\left(S_{b} S_{b}^{*}\right)=0$, or equivalently $S_{a} S_{a}^{*}+S_{b} S_{b}^{*}$.
Theorem [Nica 1992, Laca-R 1996]. If (G, P) is suitably amenable, then $(\mathcal{T}(P), T)=\overline{\operatorname{span}}\left\{T_{x} T_{y}^{*}\right\}$ is universal for Nica-covariant isometric representations of P.

For $(G, P)=\left(\mathbb{F}_{2}, P\right)$ we recover the uniqueness of the Toeplitz-Cuntz algebra $\mathcal{T} \mathcal{O}_{2} \quad$ (Cuntz 1977).
The new work with Marcelo concerns the following semigroup recently studied by Cuntz:
Example. $\mathbb{N} \rtimes \mathbb{N}^{\times}$with $(m, a)(n, b)=(m+a n, a b)$.

Example. Nica-covariant representations of $\left(\mathbb{F}_{2},\langle a, b\rangle\right)$ are given by pairs of isometries such that $\left(S_{a} S_{a}^{*}\right)\left(S_{b} S_{b}^{*}\right)=0$, or equivalently $S_{a} S_{a}^{*}+S_{b} S_{b}^{*}$.
Theorem [Nica 1992, Laca-R 1996]. If (G, P) is suitably amenable, then $(\mathcal{T}(P), T)=\overline{\operatorname{span}}\left\{T_{x} T_{y}^{*}\right\}$ is universal for Nica-covariant isometric representations of P.
For $(G, P)=\left(\mathbb{F}_{2}, P\right)$ we recover the uniqueness of the Toeplitz-Cuntz algebra $\mathcal{T \mathcal { O } _ { 2 }}$ (Cuntz 1977).
The new work with Marcelo concerns the following semigroup recently studied by Cuntz:
Example. $\mathbb{N} \rtimes \mathbb{N}^{\times}$with $(m, a)(n, b)=(m+a n, a b)$.
Question 1. Is $\left(\mathbb{Q} \rtimes \mathbb{Q}_{+}^{*}, \mathbb{N} \rtimes \mathbb{N}^{\times}\right)$quasi-lattice ordered?

We need to understand the partial order on $\mathbb{N} \rtimes \mathbb{N}^{\times}$. We have

$$
\begin{aligned}
(m, a) \leq(k, c) & \Longleftrightarrow \exists(l, d) \in P \text { with }(k, c)=(m+a l, a d) \\
& \Longleftrightarrow a \mid c \text { and } k \in m+a \mathbb{N} .
\end{aligned}
$$

We need to understand the partial order on $\mathbb{N} \rtimes \mathbb{N}^{\times}$. We have

$$
\begin{aligned}
(m, a) \leq(k, c) & \Longleftrightarrow \exists(l, d) \in P \text { with }(k, c)=(m+a l, a d) \\
& \Longleftrightarrow a \mid c \text { and } k \in m+a \mathbb{N} .
\end{aligned}
$$

Proposition. $\left(\mathbb{Q} \rtimes \mathbb{Q}_{+}^{*}, \mathbb{N} \rtimes \mathbb{N}^{\times}\right)$is quasi-lattice ordered, and for $(m, a),(n, b) \in P=\mathbb{N} \rtimes \mathbb{N}^{\times}$we have

$$
(m, a) \vee(n, b)= \begin{cases}\infty & \text { unless }(a, b) \text { divides } m-n \\ (I,[a, b]) & \text { if it does },\end{cases}
$$

where $I=\min ((m+a \mathbb{N}) \cap(n+b \mathbb{N})$) (which is non-empty if and only if (a, b) divides $m-n)$.

We need to understand the partial order on $\mathbb{N} \rtimes \mathbb{N}^{\times}$. We have

$$
\begin{aligned}
(m, a) \leq(k, c) & \Longleftrightarrow \exists(l, d) \in P \text { with }(k, c)=(m+a l, a d) \\
& \Longleftrightarrow a \mid c \text { and } k \in m+a \mathbb{N} .
\end{aligned}
$$

Proposition. $\left(\mathbb{Q} \rtimes \mathbb{Q}_{+}^{*}, \mathbb{N} \rtimes \mathbb{N}^{\times}\right)$is quasi-lattice ordered, and for $(m, a),(n, b) \in P=\mathbb{N} \rtimes \mathbb{N}^{\times}$we have

$$
(m, a) \vee(n, b)= \begin{cases}\infty & \text { unless }(a, b) \text { divides } m-n \\ (I,[a, b]) & \text { if it does },\end{cases}
$$

where $I=\min ((m+a \mathbb{N}) \cap(n+b \mathbb{N})$) (which is non-empty if and only if (a, b) divides $m-n)$.

In particular, $\mathcal{T}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right)=\overline{\operatorname{span}}\left\{T_{(m, a)} T_{(n, b)}^{*}\right\}$.

We set $S=T_{(1,1)}$ and $V_{a}=T_{(0, a)}$. Then
(a) $V_{a} V_{b}=V_{b} V_{a}$ for all a, b, and $V_{a}^{*} V_{b}=V_{b} V_{a}^{*}$ for $(a, b)=1$,
(b) $V_{a} S=S^{a} V_{a}$,
(c) $S^{*} V_{a}=S^{p-1} V_{a} S^{*}$, and
(d) $V_{a}^{*} S^{\prime} V_{a}=0$ for $0<I<a$.

We set $S=T_{(1,1)}$ and $V_{a}=T_{(0, a)}$. Then
(a) $V_{a} V_{b}=V_{b} V_{a}$ for all a, b, and $V_{a}^{*} V_{b}=V_{b} V_{a}^{*}$ for $(a, b)=1$,
(b) $V_{a} S=S^{a} V_{a}$,
(c) $S^{*} V_{a}=S^{p-1} V_{a} S^{*}$, and
(d) $V_{a}^{*} S^{\prime} V_{a}=0$ for $0<I<a$.
(a) says that V is a Nica-covariant representation of \mathbb{N}^{\times}; (b) says $T_{(0, p)} T_{(1,1)}=T_{(p, p)}$; (c) and (d) are Nica covariance for the pairs $x=(1,1), y=(0, p)$ and $x=(0, p), y=(1, p)$.

We set $S=T_{(1,1)}$ and $V_{a}=T_{(0, a)}$. Then
(a) $V_{a} V_{b}=V_{b} V_{a}$ for all a, b, and $V_{a}^{*} V_{b}=V_{b} V_{a}^{*}$ for $(a, b)=1$,
(b) $V_{a} S=S^{a} V_{a}$,
(c) $S^{*} V_{a}=S^{p-1} V_{a} S^{*}$, and
(d) $V_{a}^{*} S^{\prime} V_{a}=0$ for $0<I<a$.
(a) says that V is a Nica-covariant representation of \mathbb{N}^{\times}; (b) says $T_{(0, p)} T_{(1,1)}=T_{(p, p)}$; (c) and (d) are Nica covariance for the pairs $x=(1,1), y=(0, p)$ and $x=(0, p), y=(1, p)$.
(d) implies that $\left\{S^{k} V_{a}: 0 \leq k<a\right\}$ is a Toeplitz-Cuntz family; in Cuntz's algebra, $S S^{*}=1$ and $\left\{S^{k} V_{a}\right\}$ is a Cuntz family.

We set $S=T_{(1,1)}$ and $V_{a}=T_{(0, a)}$. Then
(a) $V_{a} V_{b}=V_{b} V_{a}$ for all a, b, and $V_{a}^{*} V_{b}=V_{b} V_{a}^{*}$ for $(a, b)=1$,
(b) $V_{a} S=S^{a} V_{a}$,
(c) $S^{*} V_{a}=S^{p-1} V_{a} S^{*}$, and
(d) $V_{a}^{*} S^{\prime} V_{a}=0$ for $0<I<a$.
(a) says that V is a Nica-covariant representation of \mathbb{N}^{\times}; (b) says $T_{(0, p)} T_{(1,1)}=T_{(p, p)}$; (c) and (d) are Nica covariance for the pairs $x=(1,1), y=(0, p)$ and $x=(0, p), y=(1, p)$.
(d) implies that $\left\{S^{k} V_{a}: 0 \leq k<a\right\}$ is a Toeplitz-Cuntz family; in Cuntz's algebra, $S S^{*}=1$ and $\left\{S^{k} V_{a}\right\}$ is a Cuntz family.
Theorem. $\left(\mathcal{T}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right), S, V_{a}\right)=\overline{\operatorname{span}}\left\{S^{m} V_{a} V_{b}^{*} S^{* n}\right\}$ is universal for families satisfying (a)-(d).

We set $S=T_{(1,1)}$ and $V_{a}=T_{(0, a)}$. Then
(a) $V_{a} V_{b}=V_{b} V_{a}$ for all a, b, and $V_{a}^{*} V_{b}=V_{b} V_{a}^{*}$ for $(a, b)=1$,
(b) $V_{a} S=S^{a} V_{a}$,
(c) $S^{*} V_{a}=S^{p-1} V_{a} S^{*}$, and
(d) $V_{a}^{*} S^{\prime} V_{a}=0$ for $0<I<a$.
(a) says that V is a Nica-covariant representation of \mathbb{N}^{\times}; (b) says $T_{(0, p)} T_{(1,1)}=T_{(p, p)}$; (c) and (d) are Nica covariance for the pairs $x=(1,1), y=(0, p)$ and $x=(0, p), y=(1, p)$.
(d) implies that $\left\{S^{k} V_{a}: 0 \leq k<a\right\}$ is a Toeplitz-Cuntz family; in Cuntz's algebra, $S S^{*}=1$ and $\left\{S^{k} V_{a}\right\}$ is a Cuntz family.

Theorem. $\left(\mathcal{T}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right), S, V_{a}\right)=\overline{\operatorname{span}}\left\{S^{m} V_{a} V_{b}^{*} S^{* n}\right\}$ is universal for families satisfying (a)-(d).
Corollary. There is a continuous action $\sigma: \mathbb{R} \rightarrow \operatorname{Aut} \mathcal{T}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right)$ such that $\sigma_{t}(S)=S$ and $\sigma_{t}\left(V_{a}\right)=a^{i t} V_{a}$.

We have

$$
\sigma_{t}\left(S^{m} V_{a} V_{b}^{*} S^{* n}\right)=a^{i t} b^{-i t} S^{m} V_{a} V_{b}^{*} S^{* n}=e^{(\log a-\log b) i t} S^{m} V_{a} V_{b}^{*} S^{* n}
$$

so all the spanning elements are analytic.

We have
$\sigma_{t}\left(S^{m} V_{a} V_{b}^{*} S^{* n}\right)=a^{i t} b^{-i t} S^{m} V_{a} V_{b}^{*} S^{* n}=e^{(\log a-\log b) i t} S^{m} V_{a} V_{b}^{*} S^{* n}$,
so all the spanning elements are analytic. The following lemma looks disarmingly easy:

Lemma. A state ϕ of $\mathcal{T}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right)$is a KMS_{β} state if and only if
$\phi\left(S^{m} V_{a} V_{b}^{*} S^{* n}\right)=\left\{\begin{array}{l}0 \text { if } a \neq b \text { or } m \not \equiv n(\bmod a) \\ a^{-\beta} \phi\left(S^{a^{-1}(m-n)}\right) \text { if } a=b, m-n \in a \mathbb{N} \\ a^{-\beta} \phi\left(S^{* a^{-1}(n-m)}\right) \text { if } a=b, n-m \in a \mathbb{N} .\end{array}\right.$

We have

$$
\sigma_{t}\left(S^{m} V_{a} V_{b}^{*} S^{* n}\right)=a^{i t} b^{-i t} S^{m} V_{a} V_{b}^{*} S^{* n}=e^{(\log a-\log b) i t} S^{m} V_{a} V_{b}^{*} S^{* n}
$$

so all the spanning elements are analytic. The following lemma looks disarmingly easy:
Lemma. A state ϕ of $\mathcal{T}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right)$is a KMS_{β} state if and only if
$\phi\left(S^{m} V_{a} V_{b}^{*} S^{* n}\right)=\left\{\begin{array}{l}0 \text { if } a \neq b \text { or } m \neq n(\bmod a) \\ a^{-\beta} \phi\left(S^{a^{-1}(m-n)}\right) \text { if } a=b, m-n \in a \mathbb{N} \\ a^{-\beta} \phi\left(S^{* a^{-1}(n-m)}\right) \text { if } a=b, n-m \in a \mathbb{N} .\end{array}\right.$
To prove it, though, we have to show that the condition implies
$\phi\left(\left(S^{m} V_{a} V_{b}^{*} S^{* n}\right)\left(S^{k} V_{c} V_{d}^{*} S^{* l}\right)\right)=a^{i t} b^{-i t} \phi\left(\left(S^{k} V_{c} V_{d}^{*} S^{* \prime}\right)\left(S^{m} V_{a} V_{b}^{*} S^{* n}\right)\right)$
and this involves being able to compute least upper bounds in $\mathbb{N} \rtimes \mathbb{N}^{\times}$.

Theorem (Laca-R) Consider the system $\left(C^{*}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right), \sigma\right)$ described above. Then:
For $\beta<1$, there are no $K M S_{\beta}$ states.
For $1 \leq \beta \leq 2$, there is a unique $K M S_{\beta}$ state.
For $\beta>2$, the simplex of $K M S_{\beta}$ states is isomorphic to the simplex $P(\mathbb{T})$ of probability measures on the unit circle \mathbb{T}.

Theorem (Laca-R) Consider the system $\left(C^{*}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right), \sigma\right)$ described above. Then:
For $\beta<1$, there are no $K M S_{\beta}$ states.
For $1 \leq \beta \leq 2$, there is a unique $K M S_{\beta}$ state.
For $\beta>2$, the simplex of $K M S_{\beta}$ states is isomorphic to the simplex $P(\mathbb{T})$ of probability measures on the unit circle \mathbb{T}.

An unusual feature is that the KMS_{β} states for $\beta>2$ do not factor through an expectation onto a commutative subalgebra.
They do factor through an expectation onto $C^{*}\left(V_{a} V_{a}^{*}, S\right)$: the elements $V_{a} V_{a}^{*}$ span a commutative algebra, but the KMS_{β} states for $\beta>2$ need not vanish on powers of the generator S.

Theorem (Laca-R) Consider the system ($C^{*}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right), \sigma$) described above. Then:
For $\beta<1$, there are no $K M S_{\beta}$ states.
For $1 \leq \beta \leq 2$, there is a unique $K M S_{\beta}$ state.
For $\beta>2$, the simplex of $K M S_{\beta}$ states is isomorphic to the simplex $P(\mathbb{T})$ of probability measures on the unit circle \mathbb{T}.

An unusual feature is that the KMS_{β} states for $\beta>2$ do not factor through an expectation onto a commutative subalgebra. They do factor through an expectation onto $C^{*}\left(V_{a} V_{a}^{*}, S\right)$: the elements $V_{a} V_{a}^{*}$ span a commutative algebra, but the KMS_{β} states for $\beta>2$ need not vanish on powers of the generator S.
"We have spontaneous symmetry breaking as β increases through $2^{\prime \prime}$, but the circular symmetry which is being broken does not come from an action of \mathbb{T} on $\mathcal{T}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right)$.

