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In physical models, observables of the system are represented
by self-adjoint elements of A, and states of the system by
positive functionals of norm 1 on A: ¢(a) is the expected value
of the observable a in the state ¢ (which is real because a = a*
and ¢ > 0).

The action « represents the time evolution of the system: the
observable a at time 0 moves to at(a) at time t, or the state ¢ at
time 0 moves to ¢ o a;.

In statistical physics, an important role is played by equilibrium
states, which are in particular invariant under the time evolution.
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called KMS states. The set

A? .= {ae€ A:t~ asa) extends to be analytic on C}

of analytic elements is a dense subalgebra of A. A state ¢ on A
is a KMS state at inverse temperature (3 if

p(ab) = ¢(bwjg(a)) forall a, b e A%

» KMS states are a-invariant.

» It suffices to check the KMS; condition on a dense
subspace of A4,

» The KMS; states always form a simplex, and the extremal
KMS; states are factor states.

» In a physical model we expect KMS states for most .



The Cuntz algebra O, is the universal algebra generated by
{sj: 1 <j < n} satisfying sjs; =1 = Z;’ﬂ.sjs]‘. There is an
action o : R — Aut O, such that a4(s;) = e's;.



The Cuntz algebra O, is the universal algebra generated by
{sj: 1 <j < n} satisfying sjs; =1 = Z;’ﬂ.sjs]‘. There is an
action o : R — Aut O, such that a4(s;) = e's;.

The relation sj's; = 1 says that s; is an isometry, and then s;s;
is the range projection.



The Cuntz algebra O, is the universal algebra generated by
{sj: 1 <j < n} satisfying sjs; =1 = Z;’ﬂ.sjs]‘. There is an
action o : R — Aut O, such that a4(s;) = e's;.

The relation sj's; = 1 says that s; is an isometry, and then s;s;
is the range projection. Then 1 = Zf:1 sjsj implies that these
range projections are mutually orthogonal — in particular,
s;sk = 0 forj# k.



The Cuntz algebra O, is the universal algebra generated by
{sj: 1 <j < nj satisfying §isj=1= 2711 sjsi. There is an
action o : R — Aut O, such that a4(s;) = e''s;.

The relation sj's; = 1 says that s; is an isometry, and then s;s;
is the range projection. Then 1 = Zf:1 sjsj implies that these
range projections are mutually orthogonal — in particular,

sji*sk = 0 for j # k. So every word in the s; and s;; has the form

X o, *
SuSy = Spq - Sum\ (SV1 o 'SVM) )

and O, = span{s,s;}.



The Cuntz algebra O, is the universal algebra generated by
{sj: 1 <j < nj satisfying §isj=1= 2711 sjsi. There is an
action o : R — Aut O, such that a4(s;) = e''s;.

The relation sj's; = 1 says that s; is an isometry, and then s;s;
is the range projection. Then 1 = Zf:1 sjsj implies that these
range projections are mutually orthogonal — in particular,

sji*sk = 0 for j # k. So every word in the s; and s;; has the form

* L *
SuSy = Spq - sﬂm\ (SV1 o 'SVM) )
and O, = span{s,s;}.

We have a(s,s;) = e~V s, s, which makes sense for
t € C, so the s,,s; are analytic elements.
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|p| = |v|. If |u| = |v|, then the KMSg; condition gives

” 0 if
6(5.83) = B(siois(s,)) = € Mlg(sts,) = {eﬁlul i i Z
0 if v # p

Lemma. ¢ is a KMS; state iff ¢(s,.s}) = {e—ﬁu if v = p.

If ¢ is a KMSj state on O, then

n

1=9¢(1)=) o(sis;)=> e’ =ne’ = B=logn.
=1

J=1

So O, has at most one KMSg state, when 5 = loglog n. Does it
have one?
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unique tracial state 7.

Theorem (Olesen-Pedersen 1978). 7 o & is a KMS,oq 5 State.

Laca-Exel, Laca-Neshveyev: Most of the above works equally
well for TOn = C*(s;j : sfs;=12> 3, s;s7). For each 3 there
is at most one KMSj state. Applying a KMSg state to the
relation 1 > Z/’-"':1 Sj37 shows that 3 > log n.

Consider * = (Jy>o{1, - ,n}tk, and S; on ¢2(X*) defined by
S;je, = ej,, giving a representation 7g of 7O,. Then
dp(@) = (1 —ne™?) Y~ e W(ns(a)e,| ey
pEX*

defines a KMSg state on 7O, for every 3 > log n.
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Any cancellative semigroup has a Toeplitz representation T on
(2(P) such that Tye, = ey,. The Toeplitz algebra of P is
T(P) := C*(Tx : x € P) C B(£?(P)).

Examples. 7(N) is generated by the unilateral shift, and is the
universal C*-algebra generated by an isometry (Coburn 1967).
Roughly, the same is true when P is the positive cone in a
totally ordered abelian group (Douglas 1972, Murphy 1987).

T (N?) is generated by the isometries T, Te,, but is not
universal for such pairs: T satisfies the extra relation
Te1 ng — ng Te1 .



Consider a subsemigroup P of a group G which satisfies
PN P~' = {e} and which generates G.

Examples. (Z,N), (Z2,N2), (Q%,NX).



Consider a subsemigroup P of a group G which satisfies

PN P~' = {e} and which generates G.

Examples. (Z,N), (Z2,N2), (Q%,NX).

Forx,y € Gwedefinex <y <= x"'y € P <=y € xP, and
then < is a partial order on G.

Def. [Nica, 92]. (G, P) is quasi-lattice ordered if every pair
X,y € G with a common upper bound in P has a least upper
bound x Vv y in P.



Consider a subsemigroup P of a group G which satisfies
PN P~' = {e} and which generates G.

Examples. (Z,N), (Z2,N2), (Q%,NX).

Forx,y € Gwedefinex <y <= x"'y € P <=y € xP, and
then < is a partial order on G.

Def. [Nica, 92]. (G, P) is quasi-lattice ordered if every pair
X,y € G with a common upper bound in P has a least upper
bound x Vv y in P.

Examples. (1) In (Z? N?) we have

(my, mp) Vv (ny, np) = (max(myq, ny), max(ms, ny)).



Consider a subsemigroup P of a group G which satisfies
PN P~' = {e} and which generates G.

Examples. (Z,N), (Z2,N2), (Q%,NX).

Forx,y € Gwedefinex <y <= x"'y € P <=y € xP, and
then < is a partial order on G.

Def. [Nica, 92]. (G, P) is quasi-lattice ordered if every pair
X,y € G with a common upper bound in P has a least upper
bound x Vv y in P.

Examples. (1) In (Z? N?) we have
(my, mp) Vv (ny, np) = (max(myq, ny), max(ms, ny)).

(2) In (Q%L,N*), m< n<= m|n,and mV n=[m,n.



Consider a subsemigroup P of a group G which satisfies
PN P~' = {e} and which generates G.

Examples. (Z,N), (Z2,N2), (Q%,NX).

Forx,y € Gwedefinex <y <= x"'y € P <=y € xP, and
then < is a partial order on G.

Def. [Nica, 92]. (G, P) is quasi-lattice ordered if every pair
X,y € G with a common upper bound in P has a least upper
bound x Vv y in P.

Examples. (1) In (Z? N?) we have
(my, mp) Vv (ny, np) = (max(myq, ny), max(ms, ny)).

(2) In (Q%L,N*), m< n<= m|n,and mV n=[m,n.

(3) F» is the free group with generators a, b, and P = (a, b).
Then x < y means that x is an initial segment of y, and the rest
of y has no factors of a=' or b~'. Here x vV y = oo often.
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if
Vivy Vivy ifxVy <oo

ViV (V, V) =
(VYY) {O vy

For example, T : P — Isom(¢?(P)). Nica covariance implies

ViVy = (V)Y (VW) = ViV V(Y V) Yy

= Vi (Vxvy V;(kvy) Vy = Ve Vx VX*‘(XW) V;—1(va) V; vy

= Vx—1(x\/y) V;—1(X\/y)a
so C*(V) =span{VxVj : x,y € P}.

Example. V : N2 — Isom(H) is Nica covariant if and only if
Ve1 V;Z — ng Ve1 .
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Example. Nica-covariant representations of (F», (a, b)) are
given by pairs of isometries such that (S,S3)(SpSf) = 0, or
equivalently S;Sj; + SpSj.

Theorem [Nica 1992, Laca-R 1996]. If (G, P) is suitably
amenable, then (T (P), T) = span{TxT;} is universal for
Nica-covariant isometric representations of P.

For (G, P) = (F2, P) we recover the uniqueness of the
Toeplitz-Cuntz algebra 70, (Cuntz 1977).

The new work with Marcelo concerns the following semigroup
recently studied by Cuntz:

Example. N x N* with (m, a)(n, b) = (m + an, ab).

Question 1. Is (Q x Q% ,N x N*) quasi-lattice ordered?
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In particular, 7(N x N*) = span{ T(m,a) T  }-



We set S = T(q4) and Va = Tg 5. Then

(@) VaVp = VpVyforall a, b, and V3V, = V,V; for (a,b) =1,
(b) Vas = &9 Va,

(c) S*V,= SP~1V,8*, and

(d) V;S'Va=0for0</<a



We set S = T(q4) and Va = Tg 5. Then

(@) VaVp = VpVyforall a, b, and V3V, = V,V; for (a,b) =1,
(b) Vas = &9 Va,

(c) S*V,= SP~1V,8*, and

(d) V;S'Va=0for0</<a

(a) says that V is a Nica-covariant representation of N*; (b)

says Top) T(1,1) = T(p,p); (¢) and (d) are Nica covariance for the
pairs x = (1,1), y = (0,p) and x = (0,p), y = (1, p).



We set S = T(q4) and Va = Tg 5. Then

(@) VaVp = VpVyforall a, b, and V3V, = V,V; for (a,b) =1,
(b) Vas = &9 Va,

(c) S*V,= SP~1V,8*, and

(d) V;S'Va=0for0</<a

(a) says that V is a Nica-covariant representation of N*; (b)
says Top) T(1,1) = T(p,p); (¢) and (d) are Nica covariance for the
pairs x = (1,1), y = (0,p) and x = (0,p), y = (1, p).

(d) implies that {SXV, : 0 < k < a} is a Toeplitz-Cuntz family; in
Cuntz’s algebra, SS* = 1 and {S¥V,} is a Cuntz family.



We set S = T(q4) and Va = Tg 5. Then

(@) VaVp = VpVyforall a, b, and V3V, = V,V; for (a,b) =1,
(b) Vas = &9 Va,

(c) S*V,= SP~1V,8*, and

(d) V;S'Va=0for0</<a

(a) says that V is a Nica-covariant representation of N*; (b)
says Top) T(1,1) = T(p,p); (¢) and (d) are Nica covariance for the

pairs x = (1,1), y = (0,p) and x = (0, p), y = (1, p).

(d) implies that {SXV, : 0 < k < a} is a Toeplitz-Cuntz family; in
Cuntz’s algebra, SS* = 1 and {S¥V,} is a Cuntz family.
Theorem. (7 (N x N*), S, V) = span{S"V,V;S*"} is
universal for families satisfying (a)—(d).




We set S = T(q4) and Va = Tg 5. Then

(@) VaVp = VpVyforall a, b, and V3V, = V,V; for (a,b) =1,
(b) Vas = &9 Va,

(c) S*V,= SP~1V,8*, and

(d) V;S'Va=0for0</<a

(a) says that V is a Nica-covariant representation of N*; (b)
says Top) T(1,1) = T(p,p); (¢) and (d) are Nica covariance for the

pairs x = (1,1), y = (0,p) and x = (0, p), y = (1, p).

(d) implies that {SXV, : 0 < k < a} is a Toeplitz-Cuntz family; in
Cuntz’s algebra, SS* = 1 and {S¥V,} is a Cuntz family.
Theorem. (7 (N x N*), S, V) = span{S"V,V;S*"} is
universal for families satisfying (a)—(d).

Corollary. There is a continuous action o : R — Aut 7 (N x N*)
such that o4(S) = S and o4(V,) = a' Va.
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We have

le(Sm VA V[)k S*n) _ a/l‘b—itsm VA Vi)k SN — e(log a—log b)itSm Vs V[)k S*n,
so all the spanning elements are analytic.The following lemma
looks disarmingly easy:

Lemma. A state ¢ of 7(N x N*) is a KMSj state if and only if
0 ifa#borm#n (mod a)

P(STVLVESH) = aPp(Sa (M"Y ifa=b, m—ne aN
aPe(sa ' (=m) ifa=b n—me aN.

To prove it, though, we have to show that the condition implies
P((S™VaVE S ™M) (S VoV SHy) = a'b~ " ((SK V. V;87)(S™Va Vi S*))

and this involves being able to compute least upper bounds in
N x N*.



Theorem (Laca—-R) Consider the system (C*(N x N*), o)
described above. Then:

For 3 < 1, there are no KMSg states.
For1 < g <2, there is a unique KMSg state.

For 3 > 2, the simplex of KMS; states is isomorphic to the
simplex P(T) of probability measures on the unit circle T.
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An unusual feature is that the KMSg states for 3 > 2 do not
factor through an expectation onto a commutative subalgebra.
They do factor through an expectation onto C*(V,V;, S): the
elements V,;V; span a commutative algebra, but the KMSg
states for 3 > 2 need not vanish on powers of the generator S.
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For1 < g <2, there is a unique KMSg state.

For 3 > 2, the simplex of KMS; states is isomorphic to the
simplex P(T) of probability measures on the unit circle T.

An unusual feature is that the KMSg states for 3 > 2 do not
factor through an expectation onto a commutative subalgebra.
They do factor through an expectation onto C*(V,V;, S): the
elements V,;V; span a commutative algebra, but the KMSg
states for 3 > 2 need not vanish on powers of the generator S.

“We have spontaneous symmetry breaking as g increases
through 27, but the circular symmetry which is being broken
does not come from an action of T on 7 (N x N*).



