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Ingredients

Let H be a Hilbert space equipped with the following operators:

π is a unitary representation of an abelian group Γ acting in H.
δ is a unitary operator on H.

We assume these operators are related by δ−1πγδ = πα(γ), where
α is an isomorphism of Γ into itself whose image has finite index
N > 1 in Γ. Write α∗ for the dual isomorphism on Γ̂.

The classic example of this is H = L2(Rd).
π is the representation of Zd given by πnf (x) = f (x − n).
δ is dilation by an expansive (all eigenvalues with absolute value

greater than 1) integer matrix A: δf (x) =
√
| det A|f (Ax).

α(n) = An and α∗(ω) = A∗ω for ω ∈ Td ≡ Rd/Zd .
We have δ−1πnδf (x) = f (x − An) = πAnf (x).
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A collection {Vj}∞−∞ of closed subspaces of H is called a
Generalized Multiresolution Analysis (GMRA) relative to π and δ if:

1. Vj ⊆ Vj+1 for all j .
2. Vj+1 = δ(Vj) for all j .
3. ∩Vj = {0}, and ∪Vj is dense in H.
4. V0 is invariant under the representation π.

It is an MRA if ∃φ whose translates form an o.n. basis for V0.

Classical examples for translation by Z and dilation by 2 in L2(R):
Haar MRA: φ = χ[0,1]

Shannon MRA: V̂0 = L2([−1
2 ,

1
2 ])

Journe GMRA:
V̂0 = L2([−8

7 ,−1] ∪ [−4
7 ,−

1
2) ∪ [−2

7 ,
2
7 ] ∪ [12 ,

4
7 ] ∪ [1, 8

7 ])

GMRAs are a useful construct for applications such as image
processing. Think of Vj as containing images at up to the j th level
of zoom.
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GMRAs and wavelets:
If we write Wj for the orthogonal complement to Vj in Vj+1, then
{ψk} whose translates form an orthonormal basis (Parseval frame)
for W0 is an orthonormal (Parseval frame) wavelet.

Conversely, a wavelet gives rise to a GMRA by taking Vj to be the
space spanned by dilates of translates of the wavelet with the
power of dilation less than j .

Stone’s Theorem:
π restricted to V0, as a unitary representation of an abelian group,
is completely determined by a measure µ on Γ̂ and a multiplicity
function m : Γ̂ 7→ {0, 1, 2, · · · ,∞}, which essentially describes how
many times each character occurs as a subrepresentation of π|V0 .
There is a unitary equivalence J between translation on V0 and
multiplication by characters on ⊕L2(σi ), where
σi = {ω : m(ω) ≥ i}. We will restrict to the case where µ is Haar
measure, and m is finite a.e.
In the MRA case for Γ = Zd , m ≡ 1, so ⊕L2(σi ) = L2(Td).

Think of J as a partial alternative Fourier transform.
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Filters

The operator J : V0 7→ ⊕L2(σi ) interacts with translations
according to Jπγf (ω) = ω(γ)Jf (ω). What about the dilation?

MRA case for Γ = Zd :
We have δ−1φ ∈ V0, so Jδ−1φ = h for some function h on
Td = Rd/Zd . The function h will contain the exponentials
corresponding to the the translates of φ that make up δ−1φ.

A Fourier argument shows that h must satisfy an orthogonality
condition ∑

AT (ζ)=ω

|h(ζ)|2 = | det A| a.e. ω.

A function that satisfies this condition is called a filter.

For example, for the Haar MRA, δ−1φ = 1√
2
χ[0,2] = 1√

2
(φ+π−1φ).

Thus, h = 1√
2
(1 + e−1), where en(ω) ≡ e2πinω.

Orthogonality here says |h(ω
2 )|2 + |h(ω

2 + 1
2)|2 = 2.



Filters

The operator J : V0 7→ ⊕L2(σi ) interacts with translations
according to Jπγf (ω) = ω(γ)Jf (ω). What about the dilation?

MRA case for Γ = Zd :
We have δ−1φ ∈ V0, so Jδ−1φ = h for some function h on
Td = Rd/Zd . The function h will contain the exponentials
corresponding to the the translates of φ that make up δ−1φ.

A Fourier argument shows that h must satisfy an orthogonality
condition ∑

AT (ζ)=ω

|h(ζ)|2 = | det A| a.e. ω.

A function that satisfies this condition is called a filter.

For example, for the Haar MRA, δ−1φ = 1√
2
χ[0,2] = 1√

2
(φ+π−1φ).

Thus, h = 1√
2
(1 + e−1), where en(ω) ≡ e2πinω.

Orthogonality here says |h(ω
2 )|2 + |h(ω

2 + 1
2)|2 = 2.



Filters

The operator J : V0 7→ ⊕L2(σi ) interacts with translations
according to Jπγf (ω) = ω(γ)Jf (ω). What about the dilation?

MRA case for Γ = Zd :
We have δ−1φ ∈ V0, so Jδ−1φ = h for some function h on
Td = Rd/Zd . The function h will contain the exponentials
corresponding to the the translates of φ that make up δ−1φ.

A Fourier argument shows that h must satisfy an orthogonality
condition ∑

AT (ζ)=ω

|h(ζ)|2 = | det A| a.e. ω.

A function that satisfies this condition is called a filter.

For example, for the Haar MRA, δ−1φ = 1√
2
χ[0,2] = 1√

2
(φ+π−1φ).

Thus, h = 1√
2
(1 + e−1), where en(ω) ≡ e2πinω.

Orthogonality here says |h(ω
2 )|2 + |h(ω

2 + 1
2)|2 = 2.



Filters

The operator J : V0 7→ ⊕L2(σi ) interacts with translations
according to Jπγf (ω) = ω(γ)Jf (ω). What about the dilation?

MRA case for Γ = Zd :
We have δ−1φ ∈ V0, so Jδ−1φ = h for some function h on
Td = Rd/Zd . The function h will contain the exponentials
corresponding to the the translates of φ that make up δ−1φ.

A Fourier argument shows that h must satisfy an orthogonality
condition ∑

AT (ζ)=ω

|h(ζ)|2 = | det A| a.e. ω.

A function that satisfies this condition is called a filter.

For example, for the Haar MRA, δ−1φ = 1√
2
χ[0,2] = 1√

2
(φ+π−1φ).

Thus, h = 1√
2
(1 + e−1), where en(ω) ≡ e2πinω.

Orthogonality here says |h(ω
2 )|2 + |h(ω

2 + 1
2)|2 = 2.



Filters

The operator J : V0 7→ ⊕L2(σi ) interacts with translations
according to Jπγf (ω) = ω(γ)Jf (ω). What about the dilation?

MRA case for Γ = Zd :
We have δ−1φ ∈ V0, so Jδ−1φ = h for some function h on
Td = Rd/Zd . The function h will contain the exponentials
corresponding to the the translates of φ that make up δ−1φ.

A Fourier argument shows that h must satisfy an orthogonality
condition ∑

AT (ζ)=ω

|h(ζ)|2 = | det A| a.e. ω.

A function that satisfies this condition is called a filter.

For example, for the Haar MRA, δ−1φ = 1√
2
χ[0,2] = 1√

2
(φ+π−1φ).

Thus, h = 1√
2
(1 + e−1), where en(ω) ≡ e2πinω.

Orthogonality here says |h(ω
2 )|2 + |h(ω

2 + 1
2)|2 = 2.



Filters

The operator J : V0 7→ ⊕L2(σi ) interacts with translations
according to Jπγf (ω) = ω(γ)Jf (ω). What about the dilation?

MRA case for Γ = Zd :
We have δ−1φ ∈ V0, so Jδ−1φ = h for some function h on
Td = Rd/Zd . The function h will contain the exponentials
corresponding to the the translates of φ that make up δ−1φ.

A Fourier argument shows that h must satisfy an orthogonality
condition ∑

AT (ζ)=ω

|h(ζ)|2 = | det A| a.e. ω.

A function that satisfies this condition is called a filter.

For example, for the Haar MRA, δ−1φ = 1√
2
χ[0,2] = 1√

2
(φ+π−1φ).

Thus, h = 1√
2
(1 + e−1), where en(ω) ≡ e2πinω.

Orthogonality here says |h(ω
2 )|2 + |h(ω

2 + 1
2)|2 = 2.



Filters: general case

We have δ−1J−1χσi ∈ V0, so Jδ−1J−1χσi = ⊕jhi ,j , where the
functions hi ,j ∈ L2(σj).
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The matrix H = [hi ,j ] must satisfy the orthogonality condition:∑
α∗(ζ)=ω

∑
j

hi ,j(ζ)hi ′,j(ζ) = Nδi ,i ′χσi (ω) a.e ω ∈ Γ̂.

(For Journe, this says |h1,1(
ω
2 )|2 + |h1,1(

ω
2 + 1

2)|2 = 2χσ1 ,

|h2,1(
ω

2
)|2 + |h2,1(

ω

2
+

1

2
)|2 = 2χσ2 , and

h1,1(
ω
2 )h2,1(

ω
2 ) + h1,1(

ω
2 + 1

2)h2,1(
ω
2 + 1

2) = 0.)

A matrix H that has hi ,j ∈ L2(σj) and satisfies this orthogonality
condition is called a filter. The filter H determines how δ−1 acts in
J(V0) = ⊕L2(σi ):

Jδ−1J−1f (ω) = HT (ω)f (α∗(ω)).
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To see how δ−1 acts on W0 = V1 	 V0, we repeat our procedure
for that space, which also must be invariant under Γ. Stone’s
theorem gives J̃ : W0 7→

⊕
L2(σ̃k). We have

J̃πγf (ω) = ω(γ)J̃(f )(ω) and

Jδ−1J̃−1χeσk
= ⊕jgk,j ,

where the matrix of functions G = [gk,j ] is a filter. That is,
gk,j ∈ L2(σj), and∑

α∗(ζ)=ω

∑
j

gk,j(ζ)gk,j(ζ) = Nδk,k ′χeσi
(α∗(ω)).

The filters G and H are complementary in the sense that an
additional orthogonality relation holds:∑

α∗(ζ)=ω

∑
j

gk,j(ζ)hi ,j(ζ) = 0.



Ruelle operators
J takes δ−1 : V0 → V0 to the the Ruelle operator
SH :

⊕
L2(σi ) →

⊕
L2(σi ):

Jδ−1J−1f (ω) = SH f (ω) = HT (ω)f (α∗(ω)).

and J̃ takes δ−1 : W0 → V0 to the Ruelle operator
SG :

⊕
L2(σ̃k) →

⊕
L2(σi ):

J ◦ δ−1 ◦ J̃−1(f )](ω) = SG f (ω) = GT (ω)f (α∗(ω)).

The orthogonality conditions imply that the Ruelle operators SH

and SG satisfy the following Cuntz-like relations:

1. S∗HSH = I , S∗GSG = Ĩ ,

2. S∗HSG = 0, and

3. SHS∗H + SGS∗G = I ,

where I is the identity operator on
⊕

i L
2(σi ) and Ĩ is the identity

operator on
⊕

k L2(σ̃k).



Building GMRAs from filters
Mallat, Meyer and Daubechies pioneered the use of filters to build
MRAs and wavelets. The idea was to use an iteration of a Fourier
transform version of our definition of h:

φ̂(ω) =
1√
| det A|

h(
ω

2
)φ̂(

ω

2
)

to build

φ̂ = Π∞j=1

1√
| det A|

h((AT )−jω).

A Fourier transform version of our definition of g could then be
used to build

ψ̂(ω) =
1√
| det A|

g(
ω

2
)φ̂(

ω

2
)

The GMRA results from taking V0 and W0 to be spanned by
translates of φ and ψ respectively.
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These methods required a potential filter function h to satisfy:
1. the orthogonality condition

∑
AT (ζ)=ω |h(ζ)|2 = det A a.e ω

2. a ”low-pass” condition: that h take on values close to√
| det A| near the origin. This ensures convergence of

the infinite product
3. a ”Cohen” condition: that h not vanish is some

neighborhood of the origin. This ensures L2 convergence
so that the translates of φ andψ would be orthonormal.

Lawton/Bratelli/Jorgensen removed the Cohen condition
(cost: replacing orthonormal bases with frames.)

Baggett/Courter/Jorgensen/M/Packer extended this work to
GMRAs (replaced h with H=matrix filter).
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The low-pass condition

Some version of the low-pass condition would be required to make
the infinite product converge. Thus, eliminating low-pass means
finding another method of building the GMRA out of the filter.
This in turn leads to building GMRAs in spaces other than L2(Rd).

Dutkay/Jorgensen (2004) produced an MRA (and wavelet) based
on the Cantor set C in L2(R), where R is the set of reals with only
finitely many 1’s in their ternary expansions. V0 is spanned by
translates of χC , and h = 1√

2
(1 + e2) (where en(x) = e2πinx). This

filter does not satisfy low-pass, as its value at the origin is
√

2
rather than

√
3.

D’Andrea/M/Packer worked out a similar construction for the
Sierpinski triangle.
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Direct limit constructions of GMRAs
Larsen/Raeburn, later with Baggett/M/Packer/Ramsay, as well as
Dutkay/Jorgensen, have realized GMRAs as direct limits.

This method builds GMRAs via the Ruelle operator SH that
represents δ−1 on K ≡

⊕
L2(σi ). If SH is a pure isometry

(∩∞n=1S
n
HK = 0), then the Hilbert-space direct limit, lim−→ (K ,SH) is

naturally equipped with a GMRA structure.

The above authors have identified these direct limits with concrete
realizations in the case of some classical and fractal filters.

Questions

1. The ingredients of a GMRA appear to be a multiplicity function
and filters. What criteria do these need to satisfy in order to yield
a GMRA? (Evidently less restrictive if we do not require the GMRA
to be in L2(R).)

2. Is there a universal concrete construction technique for a GMRA
given these ingredients?
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Restrictions on the multiplicity function m

If a nonzero function m : Γ̂ 7→ {0, 1, 2, · · · } is a multiplicity
function for a GMRA,m must satisfy the consistency inequality:

m(ω) ≤
∑

α∗(ζ)=ω

m(ζ).

In this case we can write

m̃(ω) =
∑

α∗(ζ)=ω

m(ζ)−m(ω),

and use m̃ as the multiplicity function on W0.

(Examples: m ≡ 1, m̃ ≡ 1 for MRA wavelets in L2(R).
m ≡ 1, m̃ ≡ 3 for MRA wavelets in L2(R2).

Bownik/Rzeszotnik/Speegle and Baggett/M showed that an
additional technical condition (related to dilates of translates of
the support of m) is required for m to be a multiplicity function for
a GMRA in L2(Rd).
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Restrictions on the filter H

For the filter H to be associated with a GMRA, we need the
corresponding Ruelle operator SH to be a pure isometry.

For H a 1× 1 matrix, SH is a pure isometry if |H(ω)| 6= 1 on a set
of positive measure in Γ̂.

For general H a more technical result shows essentially that SH is a
pure isometry if there exists a set of positive measure where

H =

(
A B
C D

)
, with A expansive and B,C ,D small.

This is significantly weaker than the traditional low-pass
assumption that h be close to the

√
|detA| near 0, or the matrix

low-pass conditions that require H have an upper left corner close
to
√
|detA| × I near the origin. For example, Sh will be a pure

isometry if we use a traditional high pass filter for h.



A canonical construction for GMRAs

Theorem (BFMP): Given a group Γ with an isomorphism α.
Suppose m : Γ̂ → 0, 1, 2, · · · is a Borel function that satisfies the
consistency inequality, and that H = [hi ,j ] is a m(α∗(ω))×m(ω)

matrix valued function on Γ̂ satisfying:
(1) hi ,j supported on σj

(2) orthogonality:
∑

α∗(ζ)=ω

∑
j hi ,j(ζ)hi ′,j(ζ) = Nδi ,i ′χσi (ω)

(3)SH is a pure isometry on
⊕

L2(σi ).
Then, there exists a complementary filter G = [gk,j ] with gk,j

supported on σj , which satisfies orthogonality with respect to
m̃(ω) =

∑
α∗(ζ)=ω m(ζ)−m(ω), and is orthogonal to H.

For each choice of G , there is a canonical GMRA {V m,H,G
j } in

H =

(⊕
i

L2(σi )

)
⊕

(⊕
k

L2(σ̃k)

)
⊕

∞⊕
j=1

Dj

(⊕
k

L2(σ̃k)

)

= V m,H,G
0 ⊕W m,H,G

0 ⊕
∞⊕
j=1

W m,H,G
j
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The group Γ acts on H by:

πγ(⊕fl)(ω) = ω(γ)(⊕fl),

and has multiplicity function m. The unitary operator

δ−1 = SH ⊕ SG ⊕D−1

interacts with πγ by δ−1πγδ = πα(γ).

In general, D is defined in terms of a cross section for the map α∗.
For Γ = Zd , α(n) = An (where A is an expansive matrix), we
embed Γ̂ = Td in Rd , and define

Dj(⊕k fk(ω)) =
⊕

k

1√
| det A|j

fk((A∗)−jω).



Example 1

Take Γ = Z and α(n) = 2n. Let m ≡ 1 and

h = χ[− 1
4
, 1
4
] ∈ L2(T) ≡ L2([−1

2
,
1

2
]).

We check that |h( x
2 )|2 + |h( x

2 + 1
2)|2 = 2. We easily find a

complementary filter g =
√

2χ±[ 1
4
, 1
2
].

The canonical Hilbert space is L2(T)⊕ L2(T)⊕ (
⊕∞

j=1 L2(2jT)),

with πn(⊕fl) = en(⊕fl) (where en(x) = e2πinx), and

δ−1(f1⊕f2⊕(⊕∞j=1f3,j) =
√

2
(
χ[− 1

4
, 1
4
](ω)f1(2ω) + χ±[ 1

4
, 1
2
](ω)f2(2ω)

)
⊕

√
2f3,1(2ω)⊕

(
⊕∞j=2

√
2
j
f3,j(2ω)

)
.

By mapping W m,H,G
j 7→ L2(±2j [12 , 1]), we can map this canonical

GMRA to the Fourier transform of the Shannon GMRA.
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Example 2: low-pass=high-pass
In the same setting, take h =

√
2χ±[ 1

4
, 1
2
], g =

√
2χ[− 1

4
, 1
4
]

The canonical Hilbert space is L2(T)⊕ L2(T)⊕ (
⊕∞

j=1 L2(2jT)),

with πn(⊕fl) = en(⊕fl) (where en(x) = e2πinx), but now

δ−1(f1⊕f2⊕(⊕∞j=1f3,j) =
√

2
(
χ±[ 1

4
, 1
2
](ω)f1(2ω) + χ[− 1

4
, 1
4
]f2(2ω)

)
⊕

√
2f3,1(2ω)⊕

(
⊕∞j=2

√
2
j
f3,j(2ω)

)
.

So, here,

δ−1 : V m,H,G
0 = L2([−1

2
,
1

2
]) 7→ L2(±[

1

4
,
1

2
]) 7→ L2(±[

3

8
,
1

2
]) 7→ · · ·

δ−1 : W m,H,G
0 = L2([−1

2
,
1

2
]) 7→ L2([−1

4
,
1

4
]) 7→ L2(±([

1

4
,
3

8
]) 7→ · · ·

Because h = 0 on an interval around 0, this GMRA cannot be
embedded in L2(R).
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Example 3: Using the Journe m and H

Recall the Journe multiplicity function and filter given by

σ1 = [−1

2
,−3

7
] ∪ [−2

7
,
2

7
] ∪ [

3

7
,
1

2
] and σ2 = [−1

7
,
1

7
] and

H =

( √
2χ[− 2

7
,− 1

4
]∪[− 1

7
, 1
7
)∪[ 1

4
, 2
7
] 0√

2χ[− 1
2
,− 3

7
]∪[ 3

7
, 1
2
] 0

)

Since we know the Journe GMRA has an associated single
orthonormal wavelet, m̃ ≡ 1. We can take G to be

G =
( √

2χ[− 1
4
,− 1

7
]∪[ 1

7
, 1
4
]

√
2χ[− 1

7
, 1
7
]

)
Here V m,H,G

0 = L2(σ1)⊕ L2(σ2), and W m,H,G
j = L2(2jT), j ≥ 0.

This canonical GMRA can be mapped to the usual Journe GMRA
by integrally translating σ1 and σ2 to the scaling set, and [−1

2 ,
1
2 ]

to the wavelet set.
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Example 4: An alternative Journe GMRA
Using again the Journe multiplicity function, let
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7
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We have

V m,H,G
0 = L2([−2

7
,
2

7
] ∪ ±[

3

7
,
1

2
])⊕ L2([−1

7
,
1

7
))

V m,H,G
−1 = L2([−1

7
,
1

7
] ∪ ±[

1

4
,
2

7
])⊕ L2([− 1

14
,

1

14
]) · · ·

Because all the V−j have overlap between the direct summands,
we cannot map to L2(R) in a way that eliminates overlap. Thus,
this GMRA cannot exist in L2(R). If we use these filters, we get a
GMRA with a degenerate multiplicity function that takes only the
values 0 and 1.
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Equivalence of GMRAs

We say that a GMRAs {Vj} in the Hilbert space H with the
representation π and dilation δ is equivalent to {V ′

j } in H′ with π′

and δ′ if there exists a unitary operator U : H → H′ that satisfies:
U(Vj) = V ′

j for all j .
U ◦ πγ = π′γ ◦ U for all γ ∈ Γ.
U ◦ δ = δ′ ◦ U.

In L2(Rd), the Fourier transform gives an equivalence between any
GMRA {Vj} and {V̂j}.

If an operator U gives an equivalence between {Vj} and {V ′
j }, two

GMRA’s for dilation by A and translation by Zd in L2(Rd), then Û
is multiplication by a function u with absolute value 1, and such
that u(A∗jω) = u(ω) for all integers j . Thus equivalence between
GMRAs for the same dilation in L2(Rd) generalizes the notion of
different MSF wavelets attached to the same wavelet set.



Two GMRA’s {Vj} and {V ′
j } are equivalent if and only if there

exist unitary operators P : V0 7→ V ′
0 and Q : W0 7→ W ′

0 that
intertwine πγ with π′γ and δ−1 with δ′−1.

Using this, we see that any GMRA {Vj} is equivalent to the

canonical GMRA {V m,H,G
j }, where m is its multiplicity function,

⊕jhi ,j = δ−1J−1χσi and ⊕jgk,j = δ−1J̃−1χeσk .
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Canonical GMRAs for familiar examples
Any MRA for dilation by 2 in L2(R) that is associated with a single
wavelet has canonical Hilbert space

L2(T)⊕ L2(T)⊕ (
∞⊕
j=1

L2(2jT)),

with πn(⊕fl) = en(⊕fl) (where en(x) = e2πinx), and

δ−1(f1 ⊕ f2 ⊕ (⊕∞j=1f3,j) = (h(ω)f1(2ω) + g(ω)f2(2ω))⊕
√

2f3,1(2ω)⊕
(
⊕∞j=2

√
2
j
f3,j(2ω)

)
.

We already saw that for the Shannon MRA, with
V̂0 = L2([−1

2 ,
1
2 ]), h =

√
2χ[− 1

4
, 1
4
] and g =

√
2χ±[ 1

4
, 1
2
] this

canonical GMRA is close to the Fourier transform of Shannon. For
the Haar MRA, with V0 spanned by translates of χ[0,1],

h = 1√
2
(1 + e−1), g = 1√

2
(e−1 − 1), this is not the case.



Dilation by 3
The MRA Haar 2-wavelet for dilation by 3 in L2(R) has canonical
Hilbert space

L2(T)⊕
(
L2(T)⊕ L2(T)

)
⊕
(⊕∞

j=1 L2(3jT)⊕ L2(3jT)
)
.

The canonical δ−1 = Sh ⊕ (Sg1 ⊕ Sg2)⊕
(⊕∞

j=1D−j
)
, where

h =
1√
3
(1+e1+e2), g1 =

1√
2
(e1−e2) and g2 =

1√
6
(−2+e1+e2),

and D−j(f1 ⊕ f2)(ω)) =
√

3
j
(f1 ⊕ f2)(3

jω).

The Cantor set MRA has the same canonical GMRA except with

h =
1√
2
(1 + e2), g1 = e1 and g2 =

1√
2
(1− e2).

The latter cannot be realized in L2(R).



Equivalence between canonical GMRAs

Two canonical GMRA’s {V m,H,G
j } and {V ′m′,H′,G ′

j } are equivalent
if and only if m = m′ and there exist unitary matrix-valued
functions A and B such that

H(ω)A(ω) = A(α∗(ω))H ′(ω) and

G (ω)A(ω) = B(α∗(ω))G ′(ω).

(Recall H(ω) is an m(α∗(ω))×m(ω) matrix, and G (ω) is an
m̃(α∗(ω))×m(ω).)

For two canonical MRA’s, equivalence implies that |h| = |h′| and
|g | = |g ′|. However, this is not sufficient, as a simple Fourier
argument shows that there exists no function a of absolute value 1
such that h(ω)a(ω) = −a(2ω)h(ω).

Determining which h’s are equivalent requires determining which
functions are coboundaries. The fact that enh is equivalent to h
corresponds to the fact that an integer translate of a scaling
function φ gives the same MRA.
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