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Ingredients
Let H be a Hilbert space equipped with the following operators:

7 is a unitary representation of an abelian group I acting in H.
0 is a unitary operator on H.

We assume these operators are related by 5‘1%5 = Ta(y), Where
« is an isomorphism of I into itself whose image has finite index
N > 1in . Write o* for the dual isomorphism on I.
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7 is a unitary representation of an abelian group I acting in H.
0 is a unitary operator on H.

We assume these operators are related by 5‘17775 = Ta(y), Where
« is an isomorphism of I into itself whose image has finite index
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The classic example of this is H = L2(R9).

7 is the representation of Z9 given by 7,f(x) = f(x — n).

J is dilation by an expansive (all eigenvalues with absolute value
greater than 1) integer matrix A: §f(x) = /| det A|f(Ax).

a(n) = An and o*(w) = A*w for w € T = R9/Z9.
We have §1m,0f(x) = f(x — An) = manf(x).



A collection {V;}> of closed subspaces of H is called a
Generalized Multiresolution Analysis (GMRA) relative to 7 and ¢ if:
1. V; C Vjy forall j.
2. Vig1 = 0(V)) for all j.
3. NV; = {0}, and UV; is dense in H.
4. Vp is invariant under the representation 7.
It is an MRA if 9¢ whose translates form an o.n. basis for V.
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GMRASs are a useful construct for applications such as image

processing. Think of V; as containing images at up to the jt level
of zoom.



GMRAs and wavelets:

If we write W; for the orthogonal complement to V; in Vj 1, then
{1k} whose translates form an orthonormal basis (Parseval frame)
for W is an orthonormal (Parseval frame) wavelet.

Conversely, a wavelet gives rise to a GMRA by taking V; to be the
space spanned by dilates of translates of the wavelet with the
power of dilation less than j.



GMRAs and wavelets:

If we write W; for the orthogonal complement to V; in Vj 1, then
{1k} whose translates form an orthonormal basis (Parseval frame)
for W is an orthonormal (Parseval frame) wavelet.

Conversely, a wavelet gives rise to a GMRA by taking V; to be the
space spanned by dilates of translates of the wavelet with the
power of dilation less than j.

Stone’s Theorem:

7 restricted to Vj, as a unitary representation of an abelian group,
is completely determined by a measure p on I' and a multiplicity
function m: I — {0,1,2,--- 00}, which essentially describes how
many times each character occurs as a subrepresentation of 7|y, .
There is a unitary equivalence J between translation on V4 and
multiplication by characters on ©L2(c;), where

o;i = {w: m(w) > i}. We will restrict to the case where p is Haar
measure, and m is finite a.e.

In the MRA case for [ = Z9, m = 1, so ©L?(0;) = L?(T¢).

Think of J as a partial alternative Fourier transform.
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Filters

The operator J : Vg — @®L%(0;) interacts with translations
according to Jmf(w) = w(v)Jf(w). What about the dilation?

MRA case for I = Z9:

We have 6 1¢ € Vg, so J6~1¢ = h for some function h on
T = R9/Z9. The function h will contain the exponentials
corresponding to the the translates of ¢ that make up 6—1¢.

A Fourier argument shows that h must satisfy an orthogonality
condition

> |h(Q)P = |detAl ae. w.

AT (Q)=w

A function that satisfies this condition is called a filter.

For example, for the Haar MRA, 6 1¢ = %X[o,z] = %((ﬁ—}-ﬂ_lﬁb).

Thus, h = %(1 + e_1), where ey(w) = e2minw.

Orthogonality here says |h(%)[2 + |h(% + 3)> = 2.
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Filters: general case
We have 5_1J_1Xa,- € Vp, so J6_1J_1Xa,- = @jh;j, where the
functions h; ; € L2(0;).
For the Journe GMRA,
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~ 8 4
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The matrix H = [h; ;] must satisfy the orthogonality condition:

Z Z hi j(¢ = Néj i xo;(w) aewe T.

=w Jj

(For Journe, this says [h1,1(£)? + [h.1(% + 3)1? = 2Xoy,

1
|h21( )2 +!h21(2 §)|2=2Xaz, and

hi1() o1 (%) + (4 + 3)ha(4 +3)=0)

A matrix H that has h;; € L?(0}) and satisfies this orthogonality
condition is called a filter. The filter H determines how 6! acts in

J(Vo) = &L2(0;):

J67 17 (w) = HT (w)f(a*(w)).



To see how 671 acts on Wy = Vi © V), we repeat our procedure
for that space, which also must be invariant under I'. Stone’s
theorem gives J : Wy — @ L%(5%). We have

Iy f(w) = w(y)J(F)(w) and
J67 G, = gk,
where the matrix of functions G = [gj ] is a filter. That is,
8kj € L2(Uj)7 and
DD 81i(Q)8i(€) = Nk pxz, (o (w)).
a*(Q)=w J

The filters G and H are complementary in the sense that an
additional orthogonality relation holds:

DORDIN-H((9 =0.

a*(Q)=w J




Ruelle operators
J takes 671 : Vo — V to the the Ruelle operator

SH . @Lz(a,') — @ L2(U,'):
J67 I H (w) = Spf(w) = HT (w)f(a*(w)).

and J takes 6=1 : Wy — V4 to the Ruelle operator

Sc: P L%(5k) — P L%(0)):
Jos o JTHA)(w) = Sef(w) = GT (w)f(a*(w)).

The orthogonality conditions imply that the Ruelle operators Sy
and Sg satisfy the following Cuntz-like relations:

1. S;,Sn=1,5:5¢ =1,

2. 5456 =0, and

3. SuSf+ ScSg =1,
where / is the identity operator on @, L?(0;) and T is the identity
operator on @, L*(5).



Building GMRAs from filters
Mallat, Meyer and Daubechies pioneered the use of filters to build
MRAs and wavelets. The idea was to use an iteration of a Fourier
transform version of our definition of h:

~ 1 W~ W
p(w) = \/ﬁh(g)ﬁb(g)
to build i
¢ =M% ————h((AT) 7w).

| det A|



Building GMRAs from filters
Mallat, Meyer and Daubechies pioneered the use of filters to build
MRAs and wavelets. The idea was to use an iteration of a Fourier
transform version of our definition of h:

~

A w
to build i
~ Taei
e LGURD)

A Fourier transform version of our definition of g could then be

used to build i

SR
#0) = —ers(33)

The GMRA results from taking Vo and Wj to be spanned by

translates of ¢ and 1) respectively.



These methods required a potential filter function h to satisfy:
1. the orthogonality condition Y- ar(¢)—,, [(¢)]* = detA a.e w
2. a "low-pass” condition: that h take on values close to

/| det A| near the origin. This ensures convergence of
the infinite product

3. a "Cohen" condition: that h not vanish is some
neighborhood of the origin. This ensures L? convergence
so that the translates of ¢ andvy> would be orthonormal.
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1. the orthogonality condition Y- ar(¢)—,, [(¢)]* = detA a.e w
2. a "low-pass” condition: that h take on values close to

/| det A| near the origin. This ensures convergence of
the infinite product

3. a "Cohen" condition: that h not vanish is some
neighborhood of the origin. This ensures L? convergence
so that the translates of ¢ andvy> would be orthonormal.

Lawton/Bratelli/Jorgensen removed the Cohen condition
(cost: replacing orthonormal bases with frames.)

Baggett/Courter/Jorgensen/M /Packer extended this work to
GMRAs (replaced h with H=matrix filter).



The low-pass condition

Some version of the low-pass condition would be required to make
the infinite product converge. Thus, eliminating low-pass means
finding another method of building the GMRA out of the filter.
This in turn leads to building GMRAs in spaces other than L2(RY).
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rather than /3.



The low-pass condition

Some version of the low-pass condition would be required to make
the infinite product converge. Thus, eliminating low-pass means
finding another method of building the GMRA out of the filter.
This in turn leads to building GMRAs in spaces other than L2(RY).

Dutkay/Jorgensen (2004) produced an MRA (and wavelet) based
on the Cantor set C in L2(R), where R is the set of reals with only
finitely many 1's in their ternary expansions. Vj is spanned by

translates of x¢, and h = %(1 + &) (where e,(x) = €?™™). This

filter does not satisfy low-pass, as its value at the origin is V2
rather than /3.

D'Andrea/M/Packer worked out a similar construction for the
Sierpinski triangle.



Direct limit constructions of GMRAs
Larsen/Raeburn, later with Baggett/M/Packer/Ramsay, as well as
Dutkay/Jorgensen, have realized GMRAs as direct limits.

This method builds GMRAs via the Ruelle operator Sy that
represents 6% on K = @ L%(0;). If Sy is a pure isometry
(N721SAK = 0), then the Hilbert-space direct limit, lim (K, Sy) is
naturally equipped with a GMRA structure.

The above authors have identified these direct limits with concrete
realizations in the case of some classical and fractal filters.
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This method builds GMRAs via the Ruelle operator Sy that
represents 6% on K = @ L%(0;). If Sy is a pure isometry
(N721SAK = 0), then the Hilbert-space direct limit, lim (K, Sy) is
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The above authors have identified these direct limits with concrete
realizations in the case of some classical and fractal filters.

Questions

1. The ingredients of a GMRA appear to be a multiplicity function
and filters. What criteria do these need to satisfy in order to yield

a GMRA? (Evidently less restrictive if we do not require the GMRA
to be in L2(R).)

2. Is there a universal concrete construction technique for a GMRA
given these ingredients?
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function for a GMRA,m must satisfy the consistency inequality:

a*(¢)=w

and use m as the multiplicity function on Wj.



Restrictions on the multiplicity function m

If a nonzero function m: T — {0,1,2,---} is a multiplicity
function for a GMRA,m must satisfy the consistency inequality:

a*(¢)=w

and use m as the multiplicity function on Wj.
(Examples: m =1, m =1 for MRA wavelets in L?(R).
m =1, m = 3 for MRA wavelets in L?(R?).



Restrictions on the multiplicity function m

If a nonzero function m: T — {0,1,2,---} is a multiplicity
function for a GMRA,m must satisfy the consistency inequality:

a*(¢)=w

and use m as the multiplicity function on Wj.
(Examples: m =1, m =1 for MRA wavelets in L?(R).
m =1, m = 3 for MRA wavelets in L?(R?).

Bownik/Rzeszotnik /Speegle and Baggett/M showed that an
additional technical condition (related to dilates of translates of
the support of m) is required for m to be a multiplicity function for
a GMRA in L2(R).



Restrictions on the filter H

For the filter H to be associated with a GMRA, we need the
corresponding Ruelle operator Sy to be a pure isometry.

For H a 1 x 1 matrix, Sy is a pure isometry if [H(w)| # 1 on a set
of positive measure in I.

For general H a more technical result shows essentially that Sy is a
pure isometry if there exists a set of positive measure where

H= < '2. g ) with A expansive and B, C, D small.

This is significantly weaker than the traditional low-pass
assumption that h be close to the \/|detA| near 0, or the matrix
low-pass conditions that require H have an upper left corner close
to \/|detA| x | near the origin. For example, Sy, will be a pure
isometry if we use a traditional high pass filter for h.



A canonical construction for GMRAs

Theorem (BFMP): Given a group I' with an isomorphism «.
Suppose m : r— 0,1,2,---is a Borel function that satisfies the
consistency inequality, and that H = [h; ] is a m(a*(w)) x m(w)
matrix valued function on T satisfying:

(1) hjj supported on o;

(2) orthogonality: }° . ()=, 22; hij(Q)hir j(C) = Nbjirxo,(w)

(3)Sy is a pure isometry on @ L2(0;).
Then, there exists a complementary filter G = [gy ;] with gy ;
supported on o}, which satisfies orthogonality with respect to
m(w) = > (¢)=w M(¢) — m(w), and is orthogonal to H.
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Theorem (BFMP): Given a group I' with an isomorphism «.
Suppose m : r— 0,1,2,---is a Borel function that satisfies the
consistency inequality, and that H = [h; ] is a m(a*(w)) x m(w)
matrix valued function on T satisfying:

(1) hjj supported on o;

(2) orthogonality: }° . ()=, 22; hij(Q)hir j(C) = Nbjirxo,(w)

(3)Sy is a pure isometry on @ L2(0;).
Then, there exists a complementary filter G = [gy ;] with gy ;
supported on o}, which satisfies orthogonality with respect to
m(w) = > (¢)=w M(¢) — m(w), and is orthogonal to H.

For each choice of G, there is a canonical GMRA {\/jm’H’G} in
H = (@ L2(a,-)> ® (@ L2(8’k)> o P <@ L2(5k))
i k j=1 k

o0
. mH,G m,H,G m,H,G
= vy Cew o P w

Jj=1



oo (EB Lz(gl,)) ® <@ L2(5k)> @J@Df (EB Lz(ak))

k
o0
H,G H,G H,G
= Wt ew"t e w
j=1
The group I acts on H by:
my(B17)(w) = w(7)(&h),
and has multiplicity function m. The unitary operator
S l=Sy®ScaD!
interacts with my by 6~ 1m0 = my).
In general, D is defined in terms of a cross section for the map «o*.

For T :AZd, a(n) = An (where A is an expansive matrix), we
embed I = T9 in R, and define

. 1 .
D (P fi(w)) = — i ((A") Hw).
(®fi(w)) @ A (A" Pw)
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Example 1
Take ' =Z and a(n) =2n. Let m=1 and

11

h=xp1y € D) = (=5, 5D

We check that |h(%)[> + |h(% + 3)|? = 2. We easily find a
complementary filter g = ﬁxi[%,%].

The canonical Hilbert space is L?(T) @ L%(T) ® (D;24 L2(2T)),
with m,(©f) = e,(®f;) (where e,(x) = €*™™), and
6 RORB(O151) = V2 (X1 5 (@)A(29) + xaps, 3y (@)h(2w)) @
V21 (2w)® (@j’iQ\fZ’@J(zw)) .

By mapping ij’H’G — L2(£2/[3,1]), we can map this canonical
GMRA to the Fourier transform of the Shannon GMRA.



Example 2: low-pass=high-pass
In the same setting, take h = \@Xi[l 1, 8= \@X[_l 1
21:2 17

The canonical Hilbert space is L*(T) @ L*(T) @ (@2, L*(2/T)),
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Example 2: low-pass=high-pass
In the same setting, take h = \@Xi[l 1, 8= \@X[_l 1
22 13

The canonical Hilbert space is L?(T) @ L2(T) @ (D24 L2(2'T)),
with 7,(2f)) = en(®1) (where e,(x) = €*™™), but now

T ABRB(OF16,) = V2 (Xapr 1y (@)A2) + X1 1h(2w)) @

D3
V21 (2w) @ (@j’izfzj@,j(zw)) )
So, here,

11 11 31
—1 m7H7G_ 2_77 2 - 2 R P
57V = (5, 5D e (L ) — PR 5D

57 WS = 12(( g, 5 () e P )

Because h = 0 on an interval around 0, this GMRA cannot be
embedded in L?(R).



Example 3: Using the Journe m and H
Recall the Journe multiplicity function and filter given by

g - [V V)

by [ Vemnuenhung O
V2xi1 sy 0
4,3

1
] and op = [—f f] and

7’5]
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1 3 2 2 31 11
= [, —2]U[-=,2]U[Z, 2] and 03 = [~ =, =] and
H— V202 ot by O
\ﬁX[,l I VERS 0
2718173

Since we know the Journe GMRA has an associated single
orthonormal wavelet, m = 1. We can take G to be
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Example 3: Using the Journe m and H
Recall the Journe multiplicity function and filter given by

=[5 2102, 21U ] and 02 = [ 2, 2] and

T2 7
Since we know the Journe GMRA has an associated single
orthonormal wavelet, m = 1. We can take G to be

= (V24 Vi)

Here Vi = 12(01) @ 1%(02), and W™™C = [2(2IT), j > 0.

This canonical GMRA can be mapped to the usual Journe GMRA
by integrally translating o1 and o2 to the scaling set, and [ 5 2
to the wavelet set.
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Using again the Journe multiplicity function, let
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Using again the Journe multiplicity function, let
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We can take G to be

G = ( VXL S AR VX Al )
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Example 4: An alternative Journe GMRA
Using again the Journe multiplicity function, let

MR G ERTSRTE
0 \@X[_L 1

14714

We can take G to be

6= V2xy oy VoA )

74 72 77 14

We have
2 2 31 11
Ve — 222 Slu s, 2]) e L3([-3, S

1 1
_ﬁ’ ﬁ]) e
Because all the V_; have overlap between the direct summands,
we cannot map to L?(R) in a way that eliminates overlap. Thus,
this GMRA cannot exist in L?(R). If we use these filters, we get a
GMRA with a degenerate multiplicity function that takes only the
values 0 and 1.

mH.G 11 12
vIe = (-2 Slu g T e L



Equivalence of GMRAs

We say that a GMRAs {V;} in the Hilbert space H with the
representation 7 and dilation § is equivalent to {\/J’} in H' with =/
and ¢’ if there exists a unitary operator U : H — H’ that satisfies:

uv,) = \/j’ for all j.

Uomy=m,oUforallyeTl.

Uod=08oU.

In [2(RY), the Fourier transform gives an equivalence between any
GMRA {V;} and {V;}.

If an operator U gives an equivalence between {V;} and {V/}, two

GMRA's for dilation by A and translation by Z¢ in L2(RY), then U
is multiplication by a function u with absolute value 1, and such
that u(A%Yw) = u(w) for all integers j. Thus equivalence between
GMRAs for the same dilation in L?(R?) generalizes the notion of
different MSF wavelets attached to the same wavelet set.
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Canonical GMRAs for familiar examples
Any MRA for dilation by 2 in L?(R) that is associated with a single
wavelet has canonical Hilbert space

[2(T)® L3(T) @ (é L2(2T)),
j=1
with 7,(®f) = e,(®f;) (where e,(x) = €>™™), and
A ® R @ (B7215,) = (h(W)A(2w) + g(w)h(2w)) ®

V2f1(2w)@ (@j’izx/ijz%,j@w)) :

We already saw that for the Shannon MRA, with

Vo L2([ 272) h_\[X 11 and g = ﬁxi[%,%] this
canonical GMRA is close to the Fourier transform of Shannon. For
the Haar MRA, with Vo spanned by translates of x[o 1),

h= %(1 +e.1), 8= %(e_l — 1), this is not the case.



Dilation by 3
The MRA Haar 2-wavelet for dilation by 3 in L2(R) has canonical
Hilbert space

L(T) & (L3(T) & L3(T)) & (D52, L2(3T) & L2(IT) ) -

The canonical §71 = S, @ (Sg, & Sg,) ® (69;21 D‘f), where
h—i(l—l—e+ ) —i(e ) and —i( 2+e1+e)
_\/ﬁ 162,8’1—\&162 gz—\@ 1T€2),
and D (f @ H)(w)) = VI (i ® 6)(Fw).
The Cantor set MRA has the same canonical GMRA except with
h—i(l—ke) = ¢ and —L(l—e)
= ﬁ 2), 81 =€ 82 = \@ 2)-

The latter cannot be realized in L2(R).
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lg| = |g’|. However, this is not sufficient, as a simple Fourier
argument shows that there exists no function a of absolute value 1
such that h(w)a(w) = —a(2w)h(w).

Determining which h's are equivalent requires determining which
functions are coboundaries.
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if and only if m = m’ and there exist unitary matrix-valued
functions A and B such that

H(w)A(w) = Ala*(w))H'(w) and

G(w)A(w) = B(a*(w))G'(w).

(Recall H(w) is an m(a*(w)) x m(w) matrix, and G(w) is an

m(a*(w)) x m(w).)

For two canonical MRA's, equivalence implies that |h| = || and
lg| = |g’|. However, this is not sufficient, as a simple Fourier
argument shows that there exists no function a of absolute value 1
such that h(w)a(w) = —a(2w)h(w).

Determining which h's are equivalent requires determining which
functions are coboundaries. The fact that e,h is equivalent to h
corresponds to the fact that an integer translate of a scaling
function ¢ gives the same MRA.



