Equivalence parameters and a canonical construction for GMRAs

Kathy Merrill
joint work with
Larry Baggett, Vera Furst and Judy Packer

GPOTS Boulder
June 3, 2009

Ingredients

Let \mathcal{H} be a Hilbert space equipped with the following operators:
π is a unitary representation of an abelian group Γ acting in \mathcal{H}. δ is a unitary operator on \mathcal{H}.

We assume these operators are related by $\delta^{-1} \pi_{\gamma} \delta=\pi_{\alpha(\gamma)}$, where α is an isomorphism of Γ into itself whose image has finite index $N>1$ in Γ. Write α^{*} for the dual isomorphism on $\widehat{\Gamma}$.

Ingredients

Let \mathcal{H} be a Hilbert space equipped with the following operators:
π is a unitary representation of an abelian group Γ acting in \mathcal{H}.
δ is a unitary operator on \mathcal{H}.
We assume these operators are related by $\delta^{-1} \pi_{\gamma} \delta=\pi_{\alpha(\gamma)}$, where α is an isomorphism of Γ into itself whose image has finite index $N>1$ in Γ. Write α^{*} for the dual isomorphism on $\widehat{\Gamma}$.

The classic example of this is $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$.
π is the representation of \mathbb{Z}^{d} given by $\pi_{n} f(x)=f(x-n)$.
δ is dilation by an expansive (all eigenvalues with absolute value greater than 1) integer matrix $A: \delta f(x)=\sqrt{|\operatorname{det} A|} f(A x)$.
$\alpha(n)=A n$ and $\alpha^{*}(\omega)=A^{*} \omega$ for $\omega \in \mathbb{T}^{d} \equiv \mathbb{R}^{d} / \mathbb{Z}^{d}$.
We have $\delta^{-1} \pi_{n} \delta f(x)=f(x-A n)=\pi_{A n} f(x)$.

A collection $\left\{V_{j}\right\}_{-\infty}^{\infty}$ of closed subspaces of \mathcal{H} is called a Generalized Multiresolution Analysis (GMRA) relative to π and δ if:

1. $V_{j} \subseteq V_{j+1}$ for all j.
2. $V_{j+1}=\delta\left(V_{j}\right)$ for all j.
3. $\cap V_{j}=\{0\}$, and $\cup V_{j}$ is dense in \mathcal{H}.
4. V_{0} is invariant under the representation π.

It is an MRA if $\exists \phi$ whose translates form an o.n. basis for V_{0}.

A collection $\left\{V_{j}\right\}_{-\infty}^{\infty}$ of closed subspaces of \mathcal{H} is called a Generalized Multiresolution Analysis (GMRA) relative to π and δ if:

1. $V_{j} \subseteq V_{j+1}$ for all j.
2. $V_{j+1}=\delta\left(V_{j}\right)$ for all j.
3. $\cap V_{j}=\{0\}$, and $\cup V_{j}$ is dense in \mathcal{H}.
4. V_{0} is invariant under the representation π.

It is an MRA if $\exists \phi$ whose translates form an o.n. basis for V_{0}.

Classical examples for translation by \mathbb{Z} and dilation by 2 in $L^{2}(\mathbb{R})$:
Haar MRA: $\phi=\chi_{[0,1]}$
Shannon MRA: $\widehat{V}_{0}=L^{2}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)$
Journe GMRA:

$$
\widehat{V}_{0}=L^{2}\left(\left[-\frac{8}{7},-1\right] \cup\left[-\frac{4}{7},-\frac{1}{2}\right) \cup\left[-\frac{2}{7}, \frac{2}{7}\right] \cup\left[\frac{1}{2}, \frac{4}{7}\right] \cup\left[1, \frac{8}{7}\right]\right)
$$

A collection $\left\{V_{j}\right\}_{-\infty}^{\infty}$ of closed subspaces of \mathcal{H} is called a Generalized Multiresolution Analysis (GMRA) relative to π and δ if:

1. $V_{j} \subseteq V_{j+1}$ for all j.
2. $V_{j+1}=\delta\left(V_{j}\right)$ for all j.
3. $\cap V_{j}=\{0\}$, and $\cup V_{j}$ is dense in \mathcal{H}.
4. V_{0} is invariant under the representation π.

It is an MRA if $\exists \phi$ whose translates form an o.n. basis for V_{0}.

Classical examples for translation by \mathbb{Z} and dilation by 2 in $L^{2}(\mathbb{R})$:
Haar MRA: $\phi=\chi_{[0,1]}$
Shannon MRA: $\widehat{V}_{0}=L^{2}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)$
Journe GMRA:

$$
\widehat{V}_{0}=L^{2}\left(\left[-\frac{8}{7},-1\right] \cup\left[-\frac{4}{7},-\frac{1}{2}\right) \cup\left[-\frac{2}{7}, \frac{2}{7}\right] \cup\left[\frac{1}{2}, \frac{4}{7}\right] \cup\left[1, \frac{8}{7}\right]\right)
$$

GMRAs are a useful construct for applications such as image processing. Think of V_{j} as containing images at up to the $j^{t h}$ level of zoom.

GMRAs and wavelets:
If we write W_{j} for the orthogonal complement to V_{j} in V_{j+1}, then $\left\{\psi_{k}\right\}$ whose translates form an orthonormal basis (Parseval frame) for W_{0} is an orthonormal (Parseval frame) wavelet.

Conversely, a wavelet gives rise to a GMRA by taking V_{j} to be the space spanned by dilates of translates of the wavelet with the power of dilation less than j.

GMRAs and wavelets:
If we write W_{j} for the orthogonal complement to V_{j} in V_{j+1}, then $\left\{\psi_{k}\right\}$ whose translates form an orthonormal basis (Parseval frame) for W_{0} is an orthonormal (Parseval frame) wavelet.

Conversely, a wavelet gives rise to a GMRA by taking V_{j} to be the space spanned by dilates of translates of the wavelet with the power of dilation less than j.

Stone's Theorem:

π restricted to V_{0}, as a unitary representation of an abelian group, is completely determined by a measure μ on $\widehat{\Gamma}$ and a multiplicity function $m: \widehat{\Gamma} \mapsto\{0,1,2, \cdots, \infty\}$, which essentially describes how many times each character occurs as a subrepresentation of $\pi \mid v_{0}$. There is a unitary equivalence J between translation on V_{0} and multiplication by characters on $\oplus L^{2}\left(\sigma_{i}\right)$, where $\sigma_{i}=\{\omega: m(\omega) \geq i\}$. We will restrict to the case where μ is Haar measure, and m is finite a.e.
In the MRA case for $\Gamma=\mathbb{Z}^{d}, m \equiv 1$, so $\oplus L^{2}\left(\sigma_{i}\right)=L^{2}\left(\mathbb{T}^{d}\right)$.
Think of J as a partial alternative Fourier transform.

Filters

The operator $J: V_{0} \mapsto \oplus L^{2}\left(\sigma_{i}\right)$ interacts with translations according to $J \pi_{\gamma} f(\omega)=\omega(\gamma) J f(\omega)$. What about the dilation?

Filters

The operator $J: V_{0} \mapsto \oplus L^{2}\left(\sigma_{i}\right)$ interacts with translations according to $J \pi_{\gamma} f(\omega)=\omega(\gamma) J f(\omega)$. What about the dilation?

MRA case for $\Gamma=\mathbb{Z}^{d}$:
We have $\delta^{-1} \phi \in V_{0}$, so $J \delta^{-1} \phi=h$ for some function h on $\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$. The function h will contain the exponentials corresponding to the the translates of ϕ that make up $\delta^{-1} \phi$.

Filters

The operator $J: V_{0} \mapsto \oplus L^{2}\left(\sigma_{i}\right)$ interacts with translations according to $J \pi_{\gamma} f(\omega)=\omega(\gamma) J f(\omega)$. What about the dilation?

MRA case for $\Gamma=\mathbb{Z}^{d}$:
We have $\delta^{-1} \phi \in V_{0}$, so $J \delta^{-1} \phi=h$ for some function h on $\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$. The function h will contain the exponentials corresponding to the the translates of ϕ that make up $\delta^{-1} \phi$.

A Fourier argument shows that h must satisfy an orthogonality condition

$$
\sum_{A^{T}(\zeta)=\omega}|h(\zeta)|^{2}=|\operatorname{det} A| \quad \text { a.e. } \omega \text {. }
$$

A function that satisfies this condition is called a filter.

Filters

The operator $J: V_{0} \mapsto \oplus L^{2}\left(\sigma_{i}\right)$ interacts with translations according to $J \pi_{\gamma} f(\omega)=\omega(\gamma) J f(\omega)$. What about the dilation?

MRA case for $\Gamma=\mathbb{Z}^{d}$:
We have $\delta^{-1} \phi \in V_{0}$, so $J \delta^{-1} \phi=h$ for some function h on $\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$. The function h will contain the exponentials corresponding to the the translates of ϕ that make up $\delta^{-1} \phi$.

A Fourier argument shows that h must satisfy an orthogonality condition

$$
\sum_{A^{T}(\zeta)=\omega}|h(\zeta)|^{2}=|\operatorname{det} A| \quad \text { a.e. } \omega \text {. }
$$

A function that satisfies this condition is called a filter.
For example, for the Haar MRA, $\delta^{-1} \phi=\frac{1}{\sqrt{2}} \chi_{[0,2]}=\frac{1}{\sqrt{2}}\left(\phi+\pi_{-1} \phi\right)$.

Filters

The operator $J: V_{0} \mapsto \oplus L^{2}\left(\sigma_{i}\right)$ interacts with translations according to $J \pi_{\gamma} f(\omega)=\omega(\gamma) J f(\omega)$. What about the dilation?

MRA case for $\Gamma=\mathbb{Z}^{d}$:
We have $\delta^{-1} \phi \in V_{0}$, so $J \delta^{-1} \phi=h$ for some function h on $\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$. The function h will contain the exponentials corresponding to the the translates of ϕ that make up $\delta^{-1} \phi$.

A Fourier argument shows that h must satisfy an orthogonality condition

$$
\sum_{A^{T}(\zeta)=\omega}|h(\zeta)|^{2}=|\operatorname{det} A| \quad \text { a.e. } \omega \text {. }
$$

A function that satisfies this condition is called a filter.
For example, for the Haar MRA, $\delta^{-1} \phi=\frac{1}{\sqrt{2}} \chi_{[0,2]}=\frac{1}{\sqrt{2}}\left(\phi+\pi_{-1} \phi\right)$.
Thus, $h=\frac{1}{\sqrt{2}}\left(1+e_{-1}\right)$, where $e_{n}(\omega) \equiv e^{2 \pi i n \omega}$.

Filters

The operator $J: V_{0} \mapsto \oplus L^{2}\left(\sigma_{i}\right)$ interacts with translations according to $J \pi_{\gamma} f(\omega)=\omega(\gamma) J f(\omega)$. What about the dilation?

MRA case for $\Gamma=\mathbb{Z}^{d}$:
We have $\delta^{-1} \phi \in V_{0}$, so $J \delta^{-1} \phi=h$ for some function h on $\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$. The function h will contain the exponentials corresponding to the the translates of ϕ that make up $\delta^{-1} \phi$.

A Fourier argument shows that h must satisfy an orthogonality condition

$$
\sum_{A^{T}(\zeta)=\omega}|h(\zeta)|^{2}=|\operatorname{det} A| \quad \text { a.e. } \omega \text {. }
$$

A function that satisfies this condition is called a filter.
For example, for the Haar MRA, $\delta^{-1} \phi=\frac{1}{\sqrt{2}} \chi_{[0,2]}=\frac{1}{\sqrt{2}}\left(\phi+\pi_{-1} \phi\right)$.
Thus, $h=\frac{1}{\sqrt{2}}\left(1+e_{-1}\right)$, where $e_{n}(\omega) \equiv e^{2 \pi i n \omega}$.
Orthogonality here says $\left|h\left(\frac{\omega}{2}\right)\right|^{2}+\left|h\left(\frac{\omega}{2}+\frac{1}{2}\right)\right|^{2}=2$.

Filters: general case

We have $\delta^{-1} J^{-1} \chi_{\sigma_{i}} \in V_{0}$, so $J \delta^{-1} J^{-1} \chi_{\sigma_{i}}=\oplus_{j} h_{i, j}$, where the functions $h_{i, j} \in L^{2}\left(\sigma_{j}\right)$.

Filters: general case
We have $\delta^{-1} J^{-1} \chi_{\sigma_{i}} \in V_{0}$, so $J \delta^{-1} J^{-1} \chi_{\sigma_{i}}=\oplus_{j} h_{i, j}$, where the functions $h_{i, j} \in L^{2}\left(\sigma_{j}\right)$.

For the Journe GMRA,

$$
\widehat{V}_{0}=L^{2}\left(\left[-\frac{8}{7},-1\right] \cup\left[-\frac{4}{7},-\frac{1}{2}\right) \cup\left[-\frac{2}{7}, \frac{2}{7}\right] \cup\left[\frac{1}{2}, \frac{4}{7}\right] \cup\left[1, \frac{8}{7}\right]\right)
$$

Filters: general case
We have $\delta^{-1} J^{-1} \chi_{\sigma_{i}} \in V_{0}$, so $J \delta^{-1} J^{-1} \chi_{\sigma_{i}}=\oplus_{j} h_{i, j}$, where the functions $h_{i, j} \in L^{2}\left(\sigma_{j}\right)$.

For the Journe GMRA,

$$
\begin{gathered}
\widehat{V}_{0}=L^{2}\left(\left[-\frac{8}{7},-1\right] \cup\left[-\frac{4}{7},-\frac{1}{2}\right) \cup\left[-\frac{2}{7}, \frac{2}{7}\right] \cup\left[\frac{1}{2}, \frac{4}{7}\right] \cup\left[1, \frac{8}{7}\right]\right), \\
\sigma_{1}=\left[-\frac{1}{2},-\frac{3}{7}\right] \cup\left[-\frac{2}{7}, \frac{2}{7}\right] \cup\left[\frac{3}{7}, \frac{1}{2}\right] \text { and } \sigma_{2}=\left[-\frac{1}{7}, \frac{1}{7}\right]
\end{gathered}
$$

Filters: general case
We have $\delta^{-1} J^{-1} \chi_{\sigma_{i}} \in V_{0}$, so $J \delta^{-1} J^{-1} \chi_{\sigma_{i}}=\oplus_{j} h_{i, j}$, where the functions $h_{i, j} \in L^{2}\left(\sigma_{j}\right)$.

For the Journe GMRA,

$$
\begin{gathered}
\widehat{V}_{0}=L^{2}\left(\left[-\frac{8}{7},-1\right] \cup\left[-\frac{4}{7},-\frac{1}{2}\right) \cup\left[-\frac{2}{7}, \frac{2}{7}\right] \cup\left[\frac{1}{2}, \frac{4}{7}\right] \cup\left[1, \frac{8}{7}\right]\right), \\
\sigma_{1}=\left[-\frac{1}{2},-\frac{3}{7}\right] \cup\left[-\frac{2}{7}, \frac{2}{7}\right] \cup\left[\frac{3}{7}, \frac{1}{2}\right] \text { and } \sigma_{2}=\left[-\frac{1}{7}, \frac{1}{7}\right] \\
H=\left(\begin{array}{ll}
\left.\sqrt{2} \chi_{\left[-\frac{2}{7}\right.},-\frac{1}{4}\right] \cup\left[-\frac{1}{7}, \frac{1}{7}\right) \cup\left[\frac{1}{4}, \frac{2}{7}\right] & 0 \\
\sqrt{2} \chi_{\left[-\frac{1}{2},-\frac{3}{7}\right] \cup\left[\frac{3}{7}, \frac{1}{2}\right]} & 0
\end{array}\right)
\end{gathered}
$$

The matrix $H=\left[h_{i, j}\right]$ must satisfy the orthogonality condition:

$$
\sum_{\alpha^{*}(\zeta)=\omega} \sum_{j} h_{i, j}(\zeta) \overline{h_{i^{\prime}, j}(\zeta)}=N \delta_{i, i^{\prime}} \chi_{\sigma_{i}}(\omega) \quad \text { a.e } \omega \in \widehat{\Gamma} .
$$

The matrix $H=\left[h_{i, j}\right]$ must satisfy the orthogonality condition:

$$
\sum_{\alpha^{*}(\zeta)=\omega} \sum_{j} h_{i, j}(\zeta) \overline{h_{i^{\prime}, j}(\zeta)}=N \delta_{i, i^{\prime}} \chi_{\sigma_{i}}(\omega) \quad \text { a.e } \omega \in \widehat{\Gamma}
$$

(For Journe, this says $\left|h_{1,1}\left(\frac{\omega}{2}\right)\right|^{2}+\left|h_{1,1}\left(\frac{\omega}{2}+\frac{1}{2}\right)\right|^{2}=2 \chi_{\sigma_{1}}$,

$$
\begin{aligned}
& \left|h_{2,1}\left(\frac{\omega}{2}\right)\right|^{2}+\left|h_{2,1}\left(\frac{\omega}{2}+\frac{1}{2}\right)\right|^{2}=2 \chi_{\sigma_{2}}, \text { and } \\
& \left.\quad h_{1,1}\left(\frac{\omega}{2}\right) \overline{h_{2,1}\left(\frac{\omega}{2}\right)}+h_{1,1}\left(\frac{\omega}{2}+\frac{1}{2}\right) \overline{h_{2,1}\left(\frac{\omega}{2}+\frac{1}{2}\right)}=0 .\right)
\end{aligned}
$$

The matrix $H=\left[h_{i, j}\right]$ must satisfy the orthogonality condition:

$$
\sum_{\alpha^{*}(\zeta)=\omega} \sum_{j} h_{i, j}(\zeta) \overline{h_{i^{\prime}, j}(\zeta)}=N \delta_{i, i^{\prime}} \chi_{\sigma_{i}}(\omega) \quad \text { a.e } \omega \in \widehat{\Gamma}
$$

(For Journe, this says $\left|h_{1,1}\left(\frac{\omega}{2}\right)\right|^{2}+\left|h_{1,1}\left(\frac{\omega}{2}+\frac{1}{2}\right)\right|^{2}=2 \chi_{\sigma_{1}}$,

$$
\begin{aligned}
& \left|h_{2,1}\left(\frac{\omega}{2}\right)\right|^{2}+\left|h_{2,1}\left(\frac{\omega}{2}+\frac{1}{2}\right)\right|^{2}=2 \chi_{\sigma_{2}}, \text { and } \\
& \left.\quad h_{1,1}\left(\frac{\omega}{2}\right) \overline{h_{2,1}\left(\frac{\omega}{2}\right)}+h_{1,1}\left(\frac{\omega}{2}+\frac{1}{2}\right) \overline{h_{2,1}\left(\frac{\omega}{2}+\frac{1}{2}\right)}=0 .\right)
\end{aligned}
$$

A matrix H that has $h_{i, j} \in L^{2}\left(\sigma_{j}\right)$ and satisfies this orthogonality condition is called a filter. The filter H determines how δ^{-1} acts in $J\left(V_{0}\right)=\oplus L^{2}\left(\sigma_{i}\right):$

$$
J \delta^{-1} J^{-1} f(\omega)=H^{T}(\omega) f\left(\alpha^{*}(\omega)\right)
$$

To see how δ^{-1} acts on $W_{0}=V_{1} \ominus V_{0}$, we repeat our procedure for that space, which also must be invariant under Γ. Stone's theorem gives $\widetilde{J}: W_{0} \mapsto \bigoplus L^{2}\left(\widetilde{\sigma}_{k}\right)$. We have

$$
\begin{gathered}
\widetilde{J} \pi_{\gamma} f(\omega)=\omega(\gamma) \widetilde{J}(f)(\omega) \text { and } \\
J \delta^{-1 \widetilde{J}^{-1}} \chi_{\widetilde{\sigma}_{k}}=\oplus_{j} g_{k, j},
\end{gathered}
$$

where the matrix of functions $G=\left[g_{k, j}\right]$ is a filter. That is, $g_{k, j} \in L^{2}\left(\sigma_{j}\right)$, and

$$
\sum_{\alpha^{*}(\zeta)=\omega} \sum_{j} g_{k, j}(\zeta) \overline{g_{k, j}(\zeta)}=N \delta_{k, k^{\prime}} \chi_{\widetilde{\sigma}_{i}}\left(\alpha^{*}(\omega)\right)
$$

The filters G and H are complementary in the sense that an additional orthogonality relation holds:

$$
\sum_{\alpha^{*}(\zeta)=\omega} \sum_{j} g_{k, j}(\zeta) \overline{h_{i, j}(\zeta)}=0
$$

Ruelle operators

J takes $\delta^{-1}: V_{0} \rightarrow V_{0}$ to the the Ruelle operator $S_{H}: \bigoplus L^{2}\left(\sigma_{i}\right) \rightarrow \bigoplus L^{2}\left(\sigma_{i}\right):$

$$
J \delta^{-1} J^{-1} f(\omega)=S_{H} f(\omega)=H^{T}(\omega) f\left(\alpha^{*}(\omega)\right)
$$

and \tilde{J} takes $\delta^{-1}: W_{0} \rightarrow V_{0}$ to the Ruelle operator $S_{G}: \bigoplus L^{2}\left(\widetilde{\sigma}_{k}\right) \rightarrow \bigoplus L^{2}\left(\sigma_{i}\right):$

$$
\left.J \circ \delta^{-1} \circ \tilde{J}^{-1}(f)\right](\omega)=S_{G} f(\omega)=G^{T}(\omega) f\left(\alpha^{*}(\omega)\right)
$$

The orthogonality conditions imply that the Ruelle operators S_{H} and S_{G} satisfy the following Cuntz-like relations:

1. $S_{H}^{*} S_{H}=I, S_{G}^{*} S_{G}=\widetilde{\jmath}$,
2. $S_{H}^{*} S_{G}=0$, and
3. $S_{H} S_{H}^{*}+S_{G} S_{G}^{*}=I$,
where I is the identity operator on $\bigoplus_{i} L^{2}\left(\sigma_{i}\right)$ and \tilde{I} is the identity operator on $\bigoplus_{k} L^{2}\left(\widetilde{\sigma}_{k}\right)$.

Building GMRAs from filters

Mallat, Meyer and Daubechies pioneered the use of filters to build MRAs and wavelets. The idea was to use an iteration of a Fourier transform version of our definition of h :

$$
\widehat{\phi}(\omega)=\frac{1}{\sqrt{|\operatorname{det} A|}} h\left(\frac{\omega}{2}\right) \widehat{\phi}\left(\frac{\omega}{2}\right)
$$

to build

$$
\widehat{\phi}=\Pi_{j=1}^{\infty} \frac{1}{\sqrt{|\operatorname{det} A|}} h\left(\left(A^{T}\right)^{-j} \omega\right)
$$

Building GMRAs from filters

Mallat, Meyer and Daubechies pioneered the use of filters to build MRAs and wavelets. The idea was to use an iteration of a Fourier transform version of our definition of h :

$$
\widehat{\phi}(\omega)=\frac{1}{\sqrt{|\operatorname{det} A|}} h\left(\frac{\omega}{2}\right) \widehat{\phi}\left(\frac{\omega}{2}\right)
$$

to build

$$
\widehat{\phi}=\Pi_{j=1}^{\infty} \frac{1}{\sqrt{|\operatorname{det} A|}} h\left(\left(A^{T}\right)^{-j} \omega\right)
$$

A Fourier transform version of our definition of g could then be used to build

$$
\widehat{\psi}(\omega)=\frac{1}{\sqrt{|\operatorname{det} A|}} g\left(\frac{\omega}{2}\right) \widehat{\phi}\left(\frac{\omega}{2}\right)
$$

The GMRA results from taking V_{0} and W_{0} to be spanned by translates of ϕ and ψ respectively.

These methods required a potential filter function h to satisfy:

1. the orthogonality condition $\sum_{A^{T}(\zeta)=\omega}|h(\zeta)|^{2}=\operatorname{det} A$ a.e ω
2. a "low-pass" condition: that h take on values close to
$\sqrt{|\operatorname{det} A|}$ near the origin. This ensures convergence of the infinite product
3. a "Cohen" condition: that h not vanish is some neighborhood of the origin. This ensures L^{2} convergence so that the translates of ϕ and ψ would be orthonormal.

These methods required a potential filter function h to satisfy:

1. the orthogonality condition $\sum_{A^{T}(\zeta)=\omega}|h(\zeta)|^{2}=\operatorname{det} A$ a.e ω
2. a "low-pass" condition: that h take on values close to
$\sqrt{|\operatorname{det} A|}$ near the origin. This ensures convergence of the infinite product
3. a "Cohen" condition: that h not vanish is some neighborhood of the origin. This ensures L^{2} convergence so that the translates of ϕ and ψ would be orthonormal.

Lawton/Bratelli/Jorgensen removed the Cohen condition (cost: replacing orthonormal bases with frames.)
Baggett/Courter/Jorgensen/M/Packer extended this work to GMRAs (replaced h with $\mathrm{H}=$ matrix filter).

The low-pass condition

Some version of the low-pass condition would be required to make the infinite product converge. Thus, eliminating low-pass means finding another method of building the GMRA out of the filter. This in turn leads to building GMRAs in spaces other than $L^{2}\left(\mathbb{R}^{d}\right)$.

The low-pass condition

Some version of the low-pass condition would be required to make the infinite product converge. Thus, eliminating low-pass means finding another method of building the GMRA out of the filter. This in turn leads to building GMRAs in spaces other than $L^{2}\left(\mathbb{R}^{d}\right)$.

Dutkay/Jorgensen (2004) produced an MRA (and wavelet) based on the Cantor set \mathcal{C} in $L^{2}(\mathcal{R})$, where \mathcal{R} is the set of reals with only finitely many 1 's in their ternary expansions. V_{0} is spanned by translates of $\chi_{\mathcal{C}}$, and $h=\frac{1}{\sqrt{2}}\left(1+e_{2}\right)$ (where $\left.e_{n}(x)=e^{2 \pi i n x}\right)$. This filter does not satisfy low-pass, as its value at the origin is $\sqrt{2}$ rather than $\sqrt{3}$.

The low-pass condition

Some version of the low-pass condition would be required to make the infinite product converge. Thus, eliminating low-pass means finding another method of building the GMRA out of the filter. This in turn leads to building GMRAs in spaces other than $L^{2}\left(\mathbb{R}^{d}\right)$.

Dutkay/Jorgensen (2004) produced an MRA (and wavelet) based on the Cantor set \mathcal{C} in $L^{2}(\mathcal{R})$, where \mathcal{R} is the set of reals with only finitely many 1 's in their ternary expansions. V_{0} is spanned by translates of $\chi_{\mathcal{C}}$, and $h=\frac{1}{\sqrt{2}}\left(1+e_{2}\right)$ (where $\left.e_{n}(x)=e^{2 \pi i n x}\right)$. This filter does not satisfy low-pass, as its value at the origin is $\sqrt{2}$ rather than $\sqrt{3}$.

D'Andrea/M/Packer worked out a similar construction for the Sierpinski triangle.

Direct limit constructions of GMRAs

Larsen/Raeburn, later with Baggett/M/Packer/Ramsay, as well as Dutkay/Jorgensen, have realized GMRAs as direct limits.

This method builds GMRAs via the Ruelle operator S_{H} that represents δ^{-1} on $\mathcal{K} \equiv \bigoplus L^{2}\left(\sigma_{i}\right)$. If S_{H} is a pure isometry $\left(\cap_{n=1}^{\infty} S_{H}^{n} \mathcal{K}=0\right)$, then the Hilbert-space direct limit, $\underset{\longrightarrow}{\lim }\left(K, S_{H}\right)$ is naturally equipped with a GMRA structure.

The above authors have identified these direct limits with concrete realizations in the case of some classical and fractal filters.

Direct limit constructions of GMRAs

Larsen/Raeburn, later with Baggett/M/Packer/Ramsay, as well as Dutkay/Jorgensen, have realized GMRAs as direct limits.

This method builds GMRAs via the Ruelle operator S_{H} that represents δ^{-1} on $\mathcal{K} \equiv \bigoplus L^{2}\left(\sigma_{i}\right)$. If S_{H} is a pure isometry $\left(\cap_{n=1}^{\infty} S_{H}^{n} \mathcal{K}=0\right)$, then the Hilbert-space direct limit, $\xrightarrow{\lim }\left(K, S_{H}\right)$ is naturally equipped with a GMRA structure.

The above authors have identified these direct limits with concrete realizations in the case of some classical and fractal filters.

Questions

1. The ingredients of a GMRA appear to be a multiplicity function and filters. What criteria do these need to satisfy in order to yield a GMRA? (Evidently less restrictive if we do not require the GMRA to be in $L^{2}(\mathbb{R})$.)
2. Is there a universal concrete construction technique for a GMRA given these ingredients?

Restrictions on the multiplicity function m

If a nonzero function $m: \widehat{\Gamma} \mapsto\{0,1,2, \cdots\}$ is a multiplicity function for a GMRA, m must satisfy the consistency inequality:

$$
m(\omega) \leq \sum_{\alpha^{*}(\zeta)=\omega} m(\zeta)
$$

In this case we can write

$$
\widetilde{m}(\omega)=\sum_{\alpha^{*}(\zeta)=\omega} m(\zeta)-m(\omega),
$$

and use \widetilde{m} as the multiplicity function on W_{0}.

Restrictions on the multiplicity function m

If a nonzero function $m: \widehat{\Gamma} \mapsto\{0,1,2, \cdots\}$ is a multiplicity function for a GMRA, m must satisfy the consistency inequality:

$$
m(\omega) \leq \sum_{\alpha^{*}(\zeta)=\omega} m(\zeta)
$$

In this case we can write

$$
\tilde{m}(\omega)=\sum_{\alpha^{*}(\zeta)=\omega} m(\zeta)-m(\omega),
$$

and use \widetilde{m} as the multiplicity function on W_{0}.
(Examples: $m \equiv 1, \widetilde{m} \equiv 1$ for MRA wavelets in $L^{2}(\mathbb{R})$. $m \equiv 1, \widetilde{m} \equiv 3$ for MRA wavelets in $L^{2}\left(\mathbb{R}^{2}\right)$.

Restrictions on the multiplicity function m

If a nonzero function $m: \widehat{\Gamma} \mapsto\{0,1,2, \cdots\}$ is a multiplicity function for a GMRA, m must satisfy the consistency inequality:

$$
m(\omega) \leq \sum_{\alpha^{*}(\zeta)=\omega} m(\zeta)
$$

In this case we can write

$$
\tilde{m}(\omega)=\sum_{\alpha^{*}(\zeta)=\omega} m(\zeta)-m(\omega),
$$

and use \widetilde{m} as the multiplicity function on W_{0}.
(Examples: $m \equiv 1, \widetilde{m} \equiv 1$ for MRA wavelets in $L^{2}(\mathbb{R})$.

$$
m \equiv 1, \widetilde{m} \equiv 3 \text { for MRA wavelets in } L^{2}\left(\mathbb{R}^{2}\right)
$$

Bownik/Rzeszotnik/Speegle and Baggett/M showed that an additional technical condition (related to dilates of translates of the support of m) is required for m to be a multiplicity function for a GMRA in $L^{2}\left(\mathbb{R}^{d}\right)$.

Restrictions on the filter H

For the filter H to be associated with a GMRA, we need the corresponding Ruelle operator S_{H} to be a pure isometry.

For H a 1×1 matrix, S_{H} is a pure isometry if $|H(\omega)| \neq 1$ on a set of positive measure in $\widehat{\Gamma}$.

For general H a more technical result shows essentially that S_{H} is a pure isometry if there exists a set of positive measure where $H=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$, with A expansive and B, C, D small.

This is significantly weaker than the traditional low-pass assumption that h be close to the $\sqrt{|\operatorname{det} A|}$ near 0 , or the matrix low-pass conditions that require H have an upper left corner close to $\sqrt{|\operatorname{det} A|} \times I$ near the origin. For example, S_{h} will be a pure isometry if we use a traditional high pass filter for h.

A canonical construction for GMRAs

Theorem (BFMP): Given a group Γ with an isomorphism α. Suppose $m: \widehat{\Gamma} \rightarrow 0,1,2, \cdots$ is a Borel function that satisfies the consistency inequality, and that $H=\left[h_{i, j}\right]$ is a $m\left(\alpha^{*}(\omega)\right) \times m(\omega)$ matrix valued function on $\widehat{\Gamma}$ satisfying:
(1) $h_{i, j}$ supported on σ_{j}
(2) orthogonality: $\sum_{\alpha^{*}(\zeta)=\omega} \sum_{j} h_{i, j}(\zeta) \overline{h_{i^{\prime}, j}(\zeta)}=N \delta_{i, i^{\prime}} \chi_{\sigma_{i}}(\omega)$
(3) S_{H} is a pure isometry on $\bigoplus L^{2}\left(\sigma_{i}\right)$.

Then, there exists a complementary filter $G=\left[g_{k, j}\right]$ with $g_{k, j}$ supported on σ_{j}, which satisfies orthogonality with respect to $\widetilde{m}(\omega)=\sum_{\alpha^{*}(\zeta)=\omega} m(\zeta)-m(\omega)$, and is orthogonal to H.

A canonical construction for GMRAs

Theorem (BFMP): Given a group Γ with an isomorphism α. Suppose $m: \widehat{\Gamma} \rightarrow 0,1,2, \cdots$ is a Borel function that satisfies the consistency inequality, and that $H=\left[h_{i, j}\right]$ is a $m\left(\alpha^{*}(\omega)\right) \times m(\omega)$ matrix valued function on $\widehat{\Gamma}$ satisfying:
(1) $h_{i, j}$ supported on σ_{j}
(2) orthogonality: $\sum_{\alpha^{*}(\zeta)=\omega} \sum_{j} h_{i, j}(\zeta) \overline{h_{i^{\prime}, j}(\zeta)}=N \delta_{i, i^{\prime}} \chi_{\sigma_{i}}(\omega)$
(3) S_{H} is a pure isometry on $\bigoplus L^{2}\left(\sigma_{i}\right)$.

Then, there exists a complementary filter $G=\left[g_{k, j}\right]$ with $g_{k, j}$ supported on σ_{j}, which satisfies orthogonality with respect to $\widetilde{m}(\omega)=\sum_{\alpha^{*}(\zeta)=\omega} m(\zeta)-m(\omega)$, and is orthogonal to H.

For each choice of G, there is a canonical GMRA $\left\{V_{j}^{m, H, G}\right\}$ in

$$
\begin{aligned}
\mathcal{H} & =\left(\bigoplus_{i} L^{2}\left(\sigma_{i}\right)\right) \oplus\left(\bigoplus_{k} L^{2}\left(\widetilde{\sigma}_{k}\right)\right) \oplus \bigoplus_{j=1}^{\infty} \mathcal{D}^{j}\left(\bigoplus_{k} L^{2}\left(\widetilde{\sigma}_{k}\right)\right) \\
& =V_{0}^{m, H, G} \oplus W_{0}^{m, H, G} \oplus \bigoplus_{j=1}^{\infty} W_{j}^{m, H, G}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{H} & =\left(\bigoplus_{i} L^{2}\left(\sigma_{i}\right)\right) \oplus\left(\bigoplus_{k} L^{2}\left(\widetilde{\sigma}_{k}\right)\right) \oplus \bigoplus_{j=1}^{\infty} \mathcal{D}^{j}\left(\bigoplus_{k} L^{2}\left(\widetilde{\sigma}_{k}\right)\right) \\
& =V_{0}^{m, H, G} \oplus W_{0}^{m, H, G} \oplus \bigoplus_{j=1}^{\infty} W_{j}^{m, H, G}
\end{aligned}
$$

The group Γ acts on \mathcal{H} by:

$$
\pi_{\gamma}\left(\oplus f_{l}\right)(\omega)=\omega(\gamma)\left(\oplus f_{l}\right)
$$

and has multiplicity function m. The unitary operator

$$
\delta^{-1}=S_{H} \oplus S_{G} \oplus \mathcal{D}^{-1}
$$

interacts with π_{γ} by $\delta^{-1} \pi_{\gamma} \delta=\pi_{\alpha(\gamma)}$.
In general, \mathcal{D} is defined in terms of a cross section for the map α^{*}. For $\Gamma=\mathbb{Z}^{d}, \alpha(n)=A n$ (where A is an expansive matrix), we embed $\widehat{\Gamma}=\mathbb{T}^{d}$ in \mathbb{R}^{d}, and define

$$
\mathcal{D}^{j}\left(\oplus_{k} f_{k}(\omega)\right)=\bigoplus_{k} \frac{1}{\sqrt{|\operatorname{det} A|}^{j}} f_{k}\left(\left(A^{*}\right)^{-j} \omega\right) .
$$

Example 1

Take $\Gamma=\mathbb{Z}$ and $\alpha(n)=2 n$. Let $m \equiv 1$ and

$$
h=\chi_{\left[-\frac{1}{4}, \frac{1}{4}\right]} \in L^{2}(\mathbb{T}) \equiv L^{2}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)
$$

We check that $\left|h\left(\frac{x}{2}\right)\right|^{2}+\left|h\left(\frac{x}{2}+\frac{1}{2}\right)\right|^{2}=2$. We easily find a complementary filter $g=\sqrt{2} \chi_{ \pm\left[\frac{1}{4}, \frac{1}{2}\right]}$.

Example 1

Take $\Gamma=\mathbb{Z}$ and $\alpha(n)=2 n$. Let $m \equiv 1$ and

$$
h=\chi_{\left[-\frac{1}{4}, \frac{1}{4}\right]} \in L^{2}(\mathbb{T}) \equiv L^{2}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)
$$

We check that $\left|h\left(\frac{x}{2}\right)\right|^{2}+\left|h\left(\frac{x}{2}+\frac{1}{2}\right)\right|^{2}=2$. We easily find a complementary filter $g=\sqrt{2} \chi_{ \pm\left[\frac{1}{4}, \frac{1}{2}\right]}$.
The canonical Hilbert space is $L^{2}(\mathbb{T}) \oplus L^{2}(\mathbb{T}) \oplus\left(\bigoplus_{j=1}^{\infty} L^{2}\left(2^{j} \mathbb{T}\right)\right)$,

$$
\begin{gathered}
\text { with } \pi_{n}\left(\oplus f_{l}\right)=e_{n}\left(\oplus f_{l}\right)\left(\text { where } e_{n}(x)=e^{2 \pi i n x}\right) \text {, and } \\
\begin{array}{r}
\delta^{-1}\left(f_{1} \oplus f_{2} \oplus\left(\oplus_{j=1}^{\infty} f_{3, j}\right)=\sqrt{2}\left(\chi_{\left[-\frac{1}{4}, \frac{1}{4}\right]}(\omega) f_{1}(2 \omega)+\chi_{ \pm\left[\frac{1}{4}, \frac{1}{2}\right]}(\omega) f_{2}(2 \omega)\right) \oplus\right. \\
\sqrt{2} f_{3,1}(2 \omega) \oplus\left(\oplus_{j=2}^{\infty} \sqrt{2} f_{3, j}^{j}(2 \omega)\right) .
\end{array}
\end{gathered}
$$

Example 1

Take $\Gamma=\mathbb{Z}$ and $\alpha(n)=2 n$. Let $m \equiv 1$ and

$$
h=\chi_{\left[-\frac{1}{4}, \frac{1}{4}\right]} \in L^{2}(\mathbb{T}) \equiv L^{2}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)
$$

We check that $\left|h\left(\frac{x}{2}\right)\right|^{2}+\left|h\left(\frac{x}{2}+\frac{1}{2}\right)\right|^{2}=2$. We easily find a complementary filter $g=\sqrt{2} \chi_{ \pm\left[\frac{1}{4}, \frac{1}{2}\right]}$.
The canonical Hilbert space is $L^{2}(\mathbb{T}) \oplus L^{2}(\mathbb{T}) \oplus\left(\bigoplus_{j=1}^{\infty} L^{2}\left(2^{j} \mathbb{T}\right)\right)$,
with $\pi_{n}\left(\oplus f_{l}\right)=e_{n}\left(\oplus f_{l}\right)$ (where $\left.e_{n}(x)=e^{2 \pi i n x}\right)$, and
$\delta^{-1}\left(f_{1} \oplus f_{2} \oplus\left(\oplus_{j=1}^{\infty} f_{3, j}\right)=\sqrt{2}\left(\chi_{\left[-\frac{1}{4}, \frac{1}{4}\right]}(\omega) f_{1}(2 \omega)+\chi_{ \pm\left[\frac{1}{4}, \frac{1}{2}\right]}(\omega) f_{2}(2 \omega)\right) \oplus\right.$

$$
\sqrt{2} f_{3,1}(2 \omega) \oplus\left(\oplus_{j=2}^{\infty} \sqrt{2}^{j} f_{3, j}(2 \omega)\right) .
$$

By mapping $W_{j}^{m, H, G} \mapsto L^{2}\left(\pm 2^{j}\left[\frac{1}{2}, 1\right]\right)$, we can map this canonical GMRA to the Fourier transform of the Shannon GMRA.

Example 2: low-pass=high-pass

In the same setting, take $h=\sqrt{2} \chi_{ \pm\left[\frac{1}{4}, \frac{1}{2}\right]}, g=\sqrt{2} \chi_{\left[-\frac{1}{4}, \frac{1}{4}\right]}$
The canonical Hilbert space is $L^{2}(\mathbb{T}) \oplus L^{2}(\mathbb{T}) \oplus\left(\bigoplus_{j=1}^{\infty} L^{2}\left(2^{j} \mathbb{T}\right)\right)$,

$$
\begin{array}{r}
\text { with } \pi_{n}\left(\oplus f_{l}\right)=e_{n}\left(\oplus f_{l}\right)\left(\text { where } e_{n}(x)=e^{2 \pi i n x}\right) \text {, but now } \\
\begin{array}{r}
\delta^{-1}\left(f_{1} \oplus f_{2} \oplus\left(\oplus_{j=1}^{\infty} f_{3, j}\right)=\sqrt{2}\left(\chi_{ \pm\left[\frac{1}{4}, \frac{1}{2}\right]}(\omega) f_{1}(2 \omega)+\chi_{\left[-\frac{1}{4}, \frac{1}{4}\right]} f_{2}(2 \omega)\right) \oplus\right. \\
\sqrt{2} f_{3,1}(2 \omega) \oplus\left(\oplus_{j=2}^{\infty} \sqrt{2}^{j} f_{3, j}(2 \omega)\right) .
\end{array}
\end{array}
$$

Example 2: low-pass=high-pass

In the same setting, take $h=\sqrt{2} \chi_{ \pm\left[\frac{1}{4}, \frac{1}{2}\right]}, g=\sqrt{2} \chi_{\left[-\frac{1}{4}, \frac{1}{4}\right]}$
The canonical Hilbert space is $L^{2}(\mathbb{T}) \oplus L^{2}(\mathbb{T}) \oplus\left(\bigoplus_{j=1}^{\infty} L^{2}\left(2^{j} \mathbb{T}\right)\right)$,

$$
\text { with } \pi_{n}\left(\oplus f_{l}\right)=e_{n}\left(\oplus f_{l}\right)\left(\text { where } e_{n}(x)=e^{2 \pi i n x}\right) \text {, but now }
$$

$\delta^{-1}\left(f_{1} \oplus f_{2} \oplus\left(\oplus_{j=1}^{\infty} f_{3, j}\right)=\sqrt{2}\left(\chi_{ \pm\left[\frac{1}{4}, \frac{1}{2}\right]}(\omega) f_{1}(2 \omega)+\chi_{\left[-\frac{1}{4}, \frac{1}{4}\right]} f_{2}(2 \omega)\right) \oplus\right.$

$$
\sqrt{2} f_{3,1}(2 \omega) \oplus\left(\oplus_{j=2}^{\infty} \sqrt{2}^{j} f_{3, j}(2 \omega)\right) .
$$

So, here,
$\delta^{-1}: V_{0}^{m, H, G}=L^{2}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right) \mapsto L^{2}\left(\pm\left[\frac{1}{4}, \frac{1}{2}\right]\right) \mapsto L^{2}\left(\pm\left[\frac{3}{8}, \frac{1}{2}\right]\right) \mapsto \cdots$
$\delta^{-1}: W_{0}^{m, H, G}=L^{2}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right) \mapsto L^{2}\left(\left[-\frac{1}{4}, \frac{1}{4}\right]\right) \mapsto L^{2}\left(\pm\left(\left[\frac{1}{4}, \frac{3}{8}\right]\right) \mapsto \cdots\right.$
Because $h=0$ on an interval around 0, this GMRA cannot be embedded in $L^{2}(\mathbb{R})$.

Example 3: Using the Journe m and H

Recall the Journe multiplicity function and filter given by

$$
\begin{gathered}
\sigma_{1}=\left[-\frac{1}{2},-\frac{3}{7}\right] \cup\left[-\frac{2}{7}, \frac{2}{7}\right] \cup\left[\frac{3}{7}, \frac{1}{2}\right] \text { and } \sigma_{2}=\left[-\frac{1}{7}, \frac{1}{7}\right] \text { and } \\
H=\left(\begin{array}{ll}
\left.\sqrt{2} \chi_{\left[-\frac{2}{7}\right.},-\frac{1}{4}\right] \cup\left[-\frac{1}{7}, \frac{1}{7}\right) \cup\left[\frac{1}{4}, \frac{2}{7}\right] & 0 \\
\sqrt{2} \chi_{\left[-\frac{1}{2},-\frac{3}{7}\right]}\left[\frac{3}{7}, \frac{1}{2}\right] & 0
\end{array}\right)
\end{gathered}
$$

Example 3: Using the Journe m and H

Recall the Journe multiplicity function and filter given by

$$
\begin{gathered}
\sigma_{1}=\left[-\frac{1}{2},-\frac{3}{7}\right] \cup\left[-\frac{2}{7}, \frac{2}{7}\right] \cup\left[\frac{3}{7}, \frac{1}{2}\right] \text { and } \sigma_{2}=\left[-\frac{1}{7}, \frac{1}{7}\right] \text { and } \\
H=\left(\begin{array}{ll}
\left.\sqrt{2} \chi_{\left[-\frac{2}{7}\right.},-\frac{1}{4}\right] \cup\left[-\frac{1}{7}, \frac{1}{7}\right) \cup\left[\frac{1}{4}, \frac{2}{7}\right] & 0 \\
\left.\sqrt{2} \chi_{\left[-\frac{1}{2},-\frac{3}{7}\right]}\right]\left[\frac{3}{7}, \frac{1}{2}\right] & 0
\end{array}\right)
\end{gathered}
$$

Since we know the Journe GMRA has an associated single orthonormal wavelet, $\widetilde{m} \equiv 1$. We can take G to be

$$
G=\left(\begin{array}{cc}
\sqrt{2} \chi_{\left[-\frac{1}{4},-\frac{1}{7}\right] \cup\left[\frac{1}{7}, \frac{1}{4}\right]} & \sqrt{2} \chi_{\left[-\frac{1}{7}, \frac{1}{7}\right]}
\end{array}\right)
$$

Example 3: Using the Journe m and H

Recall the Journe multiplicity function and filter given by

$$
\begin{gathered}
\sigma_{1}=\left[-\frac{1}{2},-\frac{3}{7}\right] \cup\left[-\frac{2}{7}, \frac{2}{7}\right] \cup\left[\frac{3}{7}, \frac{1}{2}\right] \text { and } \sigma_{2}=\left[-\frac{1}{7}, \frac{1}{7}\right] \text { and } \\
H=\left(\begin{array}{ll}
\left.\sqrt{2} \chi_{\left[-\frac{2}{7}\right.},-\frac{1}{4}\right] \cup\left[-\frac{1}{7}, \frac{1}{7}\right) \cup\left[\frac{1}{4}, \frac{2}{7}\right] & 0 \\
\left.\sqrt{2} \chi_{\left[-\frac{1}{2},-\frac{3}{7}\right]}\right]\left[\frac{3}{7}, \frac{1}{2}\right] & 0
\end{array}\right)
\end{gathered}
$$

Since we know the Journe GMRA has an associated single orthonormal wavelet, $\widetilde{m} \equiv 1$. We can take G to be

$$
G=\left(\begin{array}{cc}
\sqrt{2} \chi_{\left[-\frac{1}{4},-\frac{1}{7}\right]} \cup\left[\frac{1}{7}, \frac{1}{4}\right] \\
& \sqrt{2} \chi_{\left[-\frac{1}{7}, \frac{1}{7}\right]}
\end{array}\right)
$$

Here $V_{0}^{m, H, G}=L^{2}\left(\sigma_{1}\right) \oplus L^{2}\left(\sigma_{2}\right)$, and $W_{j}^{m, H, G}=L^{2}\left(2^{j} \mathbb{T}\right), j \geq 0$.

Example 3: Using the Journe m and H

Recall the Journe multiplicity function and filter given by

$$
\begin{gathered}
\sigma_{1}=\left[-\frac{1}{2},-\frac{3}{7}\right] \cup\left[-\frac{2}{7}, \frac{2}{7}\right] \cup\left[\frac{3}{7}, \frac{1}{2}\right] \text { and } \sigma_{2}=\left[-\frac{1}{7}, \frac{1}{7}\right] \text { and } \\
H=\left(\begin{array}{ll}
\left.\sqrt{2} \chi_{\left[-\frac{2}{7}\right.},-\frac{1}{4}\right] \cup\left[-\frac{1}{7}, \frac{1}{7}\right) \cup\left[\frac{1}{4}, \frac{2}{7}\right] & 0 \\
\left.\sqrt{2} \chi_{\left[-\frac{1}{2},-\frac{3}{7}\right]}\right]\left[\frac{3}{7}, \frac{1}{2}\right] & 0
\end{array}\right)
\end{gathered}
$$

Since we know the Journe GMRA has an associated single orthonormal wavelet, $\widetilde{m} \equiv 1$. We can take G to be

$$
G=\left(\begin{array}{cc}
\sqrt{2} \chi_{\left[-\frac{1}{4},-\frac{1}{7}\right]} \cup\left[\frac{1}{7}, \frac{1}{4}\right] & \sqrt{2} \chi_{\left[-\frac{1}{7}, \frac{1}{7}\right]}
\end{array}\right)
$$

Here $V_{0}^{m, H, G}=L^{2}\left(\sigma_{1}\right) \oplus L^{2}\left(\sigma_{2}\right)$, and $W_{j}^{m, H, G}=L^{2}\left(2^{j} \mathbb{T}\right), j \geq 0$.
This canonical GMRA can be mapped to the usual Journe GMRA by integrally translating σ_{1} and σ_{2} to the scaling set, and $\left[-\frac{1}{2}, \frac{1}{2}\right]$ to the wavelet set.

Example 4: An alternative Journe GMRA

Using again the Journe multiplicity function, let

$$
H=\left(\begin{array}{ll}
\sqrt{2} \chi_{\left[-\frac{2}{7},-\frac{1}{4}\right] \cup\left[-\frac{1}{7}, \frac{1}{7}\right) \cup\left[\frac{1}{4}, \frac{2}{7}\right]} & 0 \\
0 & \sqrt{2} \chi_{\left[-\frac{1}{14}, \frac{1}{14}\right]}
\end{array}\right)
$$

Example 4: An alternative Journe GMRA

Using again the Journe multiplicity function, let

$$
H=\left(\begin{array}{ll}
\sqrt{2} \chi_{\left[-\frac{2}{7},-\frac{1}{4}\right] \cup\left[-\frac{1}{7}, \frac{1}{7}\right) \cup\left[\frac{1}{4}, \frac{2}{7}\right]} & 0 \\
0 & \sqrt{2} \chi_{\left[-\frac{1}{14}, \frac{1}{14}\right]}
\end{array}\right)
$$

We can take G to be

$$
G=\left(\begin{array}{cc}
\left.\sqrt{2} \chi_{\left[-\frac{1}{2},-\frac{3}{7}\right]}\right]\left[-\frac{1}{4},-\frac{1}{7}\right] \cup\left[\frac{1}{7}, \frac{1}{4}\right] \cup\left[\frac{3}{7}, \frac{1}{2}\right] & \left.\sqrt{2} \chi_{\left[-\frac{1}{7},-\frac{1}{14}\right] \cup\left[\frac{1}{14}, \frac{1}{7}\right]}\right)
\end{array}\right)
$$

Example 4: An alternative Journe GMRA

Using again the Journe multiplicity function, let

$$
H=\left(\begin{array}{ll}
\sqrt{2} \chi_{\left[-\frac{2}{7},-\frac{1}{4}\right] \cup\left[-\frac{1}{7}, \frac{1}{7}\right) \cup\left[\frac{1}{4}, \frac{2}{7}\right]} & 0 \\
0 & \sqrt{2} \chi_{\left[-\frac{1}{14}, \frac{1}{14}\right]}
\end{array}\right)
$$

We can take G to be

$$
G=\left(\begin{array}{cc}
\left.\sqrt{2} \chi_{\left[-\frac{1}{2},-\frac{3}{7}\right]}\right]\left[-\frac{1}{4},-\frac{1}{7}\right] \cup\left[\frac{1}{7}, \frac{1}{4}\right] \cup\left[\frac{3}{7}, \frac{1}{2}\right] & \left.\sqrt{2} \chi_{\left[-\frac{1}{7},-\frac{1}{14}\right] \cup\left[\frac{1}{14}, \frac{1}{7}\right]}\right)
\end{array}\right)
$$

We have

$$
\begin{gathered}
V_{0}^{m, H, G}=L^{2}\left(\left[-\frac{2}{7}, \frac{2}{7}\right] \cup \pm\left[\frac{3}{7}, \frac{1}{2}\right]\right) \oplus L^{2}\left(\left[-\frac{1}{7}, \frac{1}{7}\right)\right) \\
V_{-1}^{m, H, G}=L^{2}\left(\left[-\frac{1}{7}, \frac{1}{7}\right] \cup \pm\left[\frac{1}{4}, \frac{2}{7}\right]\right) \oplus L^{2}\left(\left[-\frac{1}{14}, \frac{1}{14}\right]\right) \cdots
\end{gathered}
$$

Because all the V_{-j} have overlap between the direct summands, we cannot map to $L^{2}(\mathbb{R})$ in a way that eliminates overlap. Thus, this GMRA cannot exist in $L^{2}(\mathbb{R})$. If we use these filters, we get a GMRA with a degenerate multiplicity function that takes only the values 0 and 1 .

Equivalence of GMRAs

We say that a GMRAs $\left\{V_{j}\right\}$ in the Hilbert space \mathcal{H} with the representation π and dilation δ is equivalent to $\left\{V_{j}^{\prime}\right\}$ in \mathcal{H}^{\prime} with π^{\prime} and δ^{\prime} if there exists a unitary operator $U: \mathcal{H} \rightarrow \mathcal{H}^{\prime}$ that satisfies:

$$
\begin{aligned}
& U\left(V_{j}\right)=V_{j}^{\prime} \text { for all } j . \\
& U \circ \pi_{\gamma}=\pi_{\gamma}^{\prime} \circ U \text { for all } \gamma \in \Gamma . \\
& U \circ \delta=\delta^{\prime} \circ U .
\end{aligned}
$$

In $L^{2}\left(\mathbb{R}^{d}\right)$, the Fourier transform gives an equivalence between any GMRA $\left\{V_{j}\right\}$ and $\left\{\widehat{V}_{j}\right\}$.

If an operator U gives an equivalence between $\left\{V_{j}\right\}$ and $\left\{V_{j}^{\prime}\right\}$, two GMRA's for dilation by A and translation by \mathbb{Z}^{d} in $L^{2}\left(\mathbb{R}^{d}\right)$, then \widehat{U} is multiplication by a function u with absolute value 1 , and such that $u\left(A^{* j} \omega\right)=u(\omega)$ for all integers j. Thus equivalence between GMRAs for the same dilation in $L^{2}\left(\mathbb{R}^{d}\right)$ generalizes the notion of different MSF wavelets attached to the same wavelet set.

Two GMRA's $\left\{V_{j}\right\}$ and $\left\{V_{j}^{\prime}\right\}$ are equivalent if and only if there exist unitary operators $P: V_{0} \mapsto V_{0}^{\prime}$ and $Q: W_{0} \mapsto W_{0}^{\prime}$ that intertwine π_{γ} with π_{γ}^{\prime} and δ^{-1} with $\delta^{\prime-1}$.

Two GMRA's $\left\{V_{j}\right\}$ and $\left\{V_{j}^{\prime}\right\}$ are equivalent if and only if there exist unitary operators $P: V_{0} \mapsto V_{0}^{\prime}$ and $Q: W_{0} \mapsto W_{0}^{\prime}$ that intertwine π_{γ} with π_{γ}^{\prime} and δ^{-1} with $\delta^{\prime-1}$.

Using this, we see that any GMRA $\left\{V_{j}\right\}$ is equivalent to the canonical GMRA $\left\{V_{j}^{m, H, G}\right\}$, where m is its multiplicity function, $\oplus_{j} h_{i, j}=\delta^{-1} J^{-1} \chi_{\sigma_{i}}$ and $\oplus_{j} g_{k, j}=\delta^{-1} \widetilde{J}^{-1} \chi_{\widetilde{\sigma}_{k}}$.

Two GMRA's $\left\{V_{j}\right\}$ and $\left\{V_{j}^{\prime}\right\}$ are equivalent if and only if there exist unitary operators $P: V_{0} \mapsto V_{0}^{\prime}$ and $Q: W_{0} \mapsto W_{0}^{\prime}$ that intertwine π_{γ} with π_{γ}^{\prime} and δ^{-1} with $\delta^{\prime-1}$.

Using this, we see that any GMRA $\left\{V_{j}\right\}$ is equivalent to the canonical GMRA $\left\{V_{j}^{m, H, G}\right\}$, where m is its multiplicity function, $\oplus_{j} h_{i, j}=\delta^{-1} J^{-1} \chi_{\sigma_{i}}$ and $\oplus_{j} g_{k, j}=\delta^{-1} \widetilde{J}^{-1} \chi_{\widetilde{\sigma}_{k}}$.

Canonical GMRAs for familiar examples

Any MRA for dilation by 2 in $L^{2}(\mathbb{R})$ that is associated with a single wavelet has canonical Hilbert space

$$
L^{2}(\mathbb{T}) \oplus L^{2}(\mathbb{T}) \oplus\left(\bigoplus_{j=1}^{\infty} L^{2}\left(2^{j} \mathbb{T}\right)\right)
$$

$$
\begin{aligned}
& \text { with } \left.\pi_{n}\left(\oplus f_{l}\right)=e_{n}\left(\oplus f_{l}\right) \text { (where } e_{n}(x)=e^{2 \pi i n x}\right) \text {, and } \\
& \left.\left.\begin{array}{rl}
\delta^{-1}\left(f_{1} \oplus f_{2} \oplus\left(\oplus_{j=1}^{\infty} f_{3, j}\right)=\right. & \left(h(\omega) f_{1}(2 \omega)\right.
\end{array}\right) g(\omega) f_{2}(2 \omega)\right) \oplus \\
& \sqrt{2} f_{3,1}(2 \omega) \oplus\left(\oplus_{j=2}^{\infty} \sqrt{2}^{j} f_{3, j}(2 \omega)\right) .
\end{aligned}
$$

We already saw that for the Shannon MRA, with $\widehat{V}_{0}=L^{2}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right), h=\sqrt{2} \chi_{\left[-\frac{1}{4}, \frac{1}{4}\right]}$ and $g=\sqrt{2} \chi_{ \pm\left[\frac{1}{4}, \frac{1}{2}\right]}$ this canonical GMRA is close to the Fourier transform of Shannon. For the Haar MRA, with V_{0} spanned by translates of $\chi_{[0,1]}$, $h=\frac{1}{\sqrt{2}}\left(1+e_{-1}\right), g=\frac{1}{\sqrt{2}}\left(e_{-1}-1\right)$, this is not the case.

Dilation by 3

The MRA Haar 2-wavelet for dilation by 3 in $L^{2}(\mathbb{R})$ has canonical Hilbert space
$L^{2}(\mathbb{T}) \oplus\left(L^{2}(\mathbb{T}) \oplus L^{2}(\mathbb{T})\right) \oplus\left(\bigoplus_{j=1}^{\infty} L^{2}\left(3^{j} \mathbb{T}\right) \oplus L^{2}\left(3^{j} \mathbb{T}\right)\right)$.
The canonical $\delta^{-1}=S_{h} \oplus\left(S_{g_{1}} \oplus S_{g_{2}}\right) \oplus\left(\bigoplus_{j=1}^{\infty} \mathcal{D}^{-j}\right)$, where
$h=\frac{1}{\sqrt{3}}\left(1+e_{1}+e_{2}\right), \quad g_{1}=\frac{1}{\sqrt{2}}\left(e_{1}-e_{2}\right)$ and $g_{2}=\frac{1}{\sqrt{6}}\left(-2+e_{1}+e_{2}\right)$,
and $\left.\mathcal{D}^{-j}\left(f_{1} \oplus f_{2}\right)(\omega)\right)=\sqrt{3}^{j}\left(f_{1} \oplus f_{2}\right)\left(3^{j} \omega\right)$.
The Cantor set MRA has the same canonical GMRA except with

$$
h=\frac{1}{\sqrt{2}}\left(1+e_{2}\right), \quad g_{1}=e_{1} \text { and } g_{2}=\frac{1}{\sqrt{2}}\left(1-e_{2}\right)
$$

The latter cannot be realized in $L^{2}(\mathbb{R})$.

Equivalence between canonical GMRAs

Two canonical GMRA's $\left\{V_{j}^{m, H, G}\right\}$ and $\left\{V_{j}^{\prime m^{\prime}, H^{\prime}, G^{\prime}}\right\}$ are equivalent if and only if $m=m^{\prime}$ and there exist unitary matrix-valued functions A and B such that

$$
\begin{gathered}
H(\omega) A(\omega)=A\left(\alpha^{*}(\omega)\right) H^{\prime}(\omega) \text { and } \\
G(\omega) A(\omega)=B\left(\alpha^{*}(\omega)\right) G^{\prime}(\omega)
\end{gathered}
$$

Equivalence between canonical GMRAs

Two canonical GMRA's $\left\{V_{j}^{m, H, G}\right\}$ and $\left\{V_{j}^{\prime m^{\prime}, H^{\prime}, G^{\prime}}\right\}$ are equivalent if and only if $m=m^{\prime}$ and there exist unitary matrix-valued functions A and B such that

$$
\begin{gathered}
H(\omega) A(\omega)=A\left(\alpha^{*}(\omega)\right) H^{\prime}(\omega) \text { and } \\
G(\omega) A(\omega)=B\left(\alpha^{*}(\omega)\right) G^{\prime}(\omega)
\end{gathered}
$$

(Recall $H(\omega)$ is an $m\left(\alpha^{*}(\omega)\right) \times m(\omega)$ matrix, and $G(\omega)$ is an $\left.\widetilde{m}\left(\alpha^{*}(\omega)\right) \times m(\omega).\right)$

Equivalence between canonical GMRAs

Two canonical GMRA's $\left\{V_{j}^{m, H, G}\right\}$ and $\left\{V_{j}^{\prime m^{\prime}, H^{\prime}, G^{\prime}}\right\}$ are equivalent if and only if $m=m^{\prime}$ and there exist unitary matrix-valued functions A and B such that

$$
\begin{gathered}
H(\omega) A(\omega)=A\left(\alpha^{*}(\omega)\right) H^{\prime}(\omega) \text { and } \\
G(\omega) A(\omega)=B\left(\alpha^{*}(\omega)\right) G^{\prime}(\omega)
\end{gathered}
$$

(Recall $H(\omega)$ is an $m\left(\alpha^{*}(\omega)\right) \times m(\omega)$ matrix, and $G(\omega)$ is an $\left.\widetilde{m}\left(\alpha^{*}(\omega)\right) \times m(\omega).\right)$

For two canonical MRA's, equivalence implies that $|h|=\left|h^{\prime}\right|$ and $|g|=\left|g^{\prime}\right|$. However, this is not sufficient, as a simple Fourier argument shows that there exists no function a of absolute value 1 such that $h(\omega) a(\omega)=-a(2 \omega) h(\omega)$.

Determining which h 's are equivalent requires determining which functions are coboundaries.

Equivalence between canonical GMRAs

Two canonical GMRA's $\left\{V_{j}^{m, H, G}\right\}$ and $\left\{V_{j}^{\prime m^{\prime}, H^{\prime}, G^{\prime}}\right\}$ are equivalent if and only if $m=m^{\prime}$ and there exist unitary matrix-valued functions A and B such that

$$
\begin{gathered}
H(\omega) A(\omega)=A\left(\alpha^{*}(\omega)\right) H^{\prime}(\omega) \text { and } \\
G(\omega) A(\omega)=B\left(\alpha^{*}(\omega)\right) G^{\prime}(\omega)
\end{gathered}
$$

(Recall $H(\omega)$ is an $m\left(\alpha^{*}(\omega)\right) \times m(\omega)$ matrix, and $G(\omega)$ is an $\left.\widetilde{m}\left(\alpha^{*}(\omega)\right) \times m(\omega).\right)$

For two canonical MRA's, equivalence implies that $|h|=\left|h^{\prime}\right|$ and $|g|=\left|g^{\prime}\right|$. However, this is not sufficient, as a simple Fourier argument shows that there exists no function a of absolute value 1 such that $h(\omega) a(\omega)=-a(2 \omega) h(\omega)$.

Determining which h 's are equivalent requires determining which functions are coboundaries. The fact that $e_{n} h$ is equivalent to h corresponds to the fact that an integer translate of a scaling function ϕ gives the same MRA.

