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Hilbert bimodules

Recall (Pimsner 1997): a right-Hilbert module X over a
C ∗-algebra A is an A–A bimodule if there is ∗-homomorphism
(left action) φ : A→ L(X ).

• Toeplitz representation: a compatible pair of ψ : X → B
linear and π : A→ B a ∗-homomorphism.

• Cuntz-Pimsner covariance means that (ψ, π) is compatible
with a canonical homomorphism π(1) : K(X )→ B.

• Toeplitz algebra TX : universal for Toeplitz reps.

• Cuntz-Pimsner algebra OX : universal for CP-cov. reps.

• Uniqueness theorems for TX (Fowler-Raeburn 1999.)

Important feature

Katsura’a modified definition of OX ensures that the canonical
covariant rep. X → OX is injective and OX satisfies a
gauge-invariant uniqueness property with respect to the
canonical gauge-action of T.
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Semigroups & product systems of Hilbert bimodules

Product system X over a semigroup P (discrete, unital) is a
semigroup with a homomorphism d : X → P s.t. Xp := d−1(p)
is a right-Hilbert A–A bimodule for p ∈ P, Xe = AAA,

and the
multiplication on X gives isomorphisms Xp ⊗A Xq

∼= Xpq for
p, q ∈ P \ {e} and the right and left actions of Xe = A on each
Xp (Arveson, Dinh, Fowler). Let φp : A→ L(Xp) denote the
left action on Xp, for p ∈ P. A Toeplitz representation of X is
ψ : X → B s.t.

1 ψp := ψ|Xp → B linear, ∀p; ψe homomorphism;

2 ψ is multiplicative;

3 ψe(〈x , y , 〉pA) = ψp(x)∗ψp(y) for x , y ∈ Xp.

ψ is injective if ψe injective (hence all ψp isometric.)
The Toeplitz algebra TX of X is the universal C ∗-algebra for
Toeplitz reps. of X ; let i : X → TX be the universal Toeplitz
rep.
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Compactly aligned product systems

Quasi-lattice ordered group (Nica 1992). Let G a discrete
group, P subsemigroup with P ∩ P−1 = {e}, and define
g ≤ h ⇐⇒ g−1h ∈ P (partial order). Then (G ,P) is
quasi-lattice ordered if for all p, q ∈ G with common upper
bound in P there is a lub p ∨ q in P. Write p ∨ q <∞ when
p, q have a common upper bound, else write p ∨ q =∞.

Notation: for p ≤ t, p 6= e let ιtp : L(Xp)→ L(Xt) be defined
by ιtp(S)(xy) = (Sx)y for S ∈ L(Xp), x ∈ Xp and t ∈ Xp−1t ;
let ιte : K(Xe)→ L(Xt) be the left action φt .
A product system X over (G ,P) is compactly aligned (Fowler
2002) if

ιp∨q
p (S)ιp∨q

q (T ) ∈ K(Xp∨q),

for all S ∈ K(Xp), T ∈ K(Xq), p ∨ q <∞, p, q ∈ P. (Fowler
assumes essential bimodules, we don’t.)
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Nica covariant representations of product systems

Recall (Pimsner): when ψp is a Toeplitz representation, there is
a homomorphism ψ(p) : K(Xp)→ B s.t.
ψ(p)(x ⊗ y∗) = ψp(x)ψp(y)∗ for all x , y ∈ Xp, p ∈ P.

Let (G ,P) be quasi-lattice ordered and X a compactly aligned
product system over P (thus ιp∨q

p (S)ιp∨q
q (T ) ∈ K(Xp∨q) when

S ∈ K(Xp), T ∈ K(Xq) and p ∨ q <∞.)
A Toeplitz rep. ψ : X → B is Nica covariant provided

ψ(p)(S)ψ(q)(T ) =

{
ψ(p∨q)

(
ιp∨q
p (S)ιp∨q

q (T )
)

if p ∨ q <∞
0 otherwise

for all S ∈ K(Xp) and T ∈ K(Xq).
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The C ∗-algebra Tcov(X )

Let (G ,P) be quasi-lattice ordered and X a compactly aligned
product system over P.

Let I be the ideal of TX generated by

i (p)(S)i (q)(T )− i (p∨q)(ιp∨q
p (S)ιp∨q

q (T )),

for p, q ∈ P, S ∈ K(Xp), T ∈ K(Xq), with ιp∨q
p (S)ιp∨q

q (T ) = 0
if p ∨ q =∞. Define Tcov(X ) := TX/I. (Note: this def.
bypasses Fowler’s assumption of all Xp essential.)
Let iX : X → Tcov(X ) be the composition of TX → Tcov(X )
with universal Toeplitz rep. X → TX .
Universal property of (Tcov(X ), iX ): given ψ : X → B Nica
covariant rep., there is a ∗-homom. ψ∗ : Tcov(X )→ B s.t.
ψ∗ ◦ iX = ψ.

Spanning property:

Tcov(X ) = span { iX (x)iX (y)∗ | x , y ∈ X }.
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Sims-Yeends’ Cuntz-Nica-Pimsner algebra NOX

Question

Which C ∗-algebra associated to a product system X captures
the features of the Cuntz-Pimsner algebra of a single bimodule?

Fowler defined an algebra OX as a quotient of TX .
Some problems: injectivity of X → OX is not known, and OX

not a quotient of Tcov(X ) when X compactly-aligned.

Answer

For X compactly aligned product system over (G ,P)
quasi-lattice ordered, Sims and Yeend introduced a new
Cuntz-Pimsner condition under the name Cuntz-Nica-Pimsner
covariance.

Definition

(Sims-Yeend (2007)) NOX is the universal C ∗-algebra
generated by a Cuntz-Nica-Pimsner covariant rep. of X .
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Towards Cuntz-Nica-Pimsner covariance

Let (G ,P) be quasi-lattice ordered and X compactly aligned
product system over P. Denote φp : A→ L(Xp) for p ∈ P (left
actions). Let Ie = A and Ir := ∩e<s≤r ker(φs).

Recall that from a Hilbert A–A bimodule Y and an ideal J of A
one can form a new Hilbert bimodule
Y · J := {y · a | y ∈ Y , a ∈ J}.
Define a new Hilbert A–A bimodule:

X̃q :=
⊕

p≤qXp · Ip−1q;

Let φ̃q : A→ L(X̃q) be the corresponding left action. Define

ι̃q : L(Xp)→ L(X̃q) by ι̃qp(T ) =
⊕

r≤q ι
r
p(T ) for p 6= e, and let

ι̃qp(T ) = 0L(X̃q)
when p 6≤ q ∈ P. Define ι̃qe on K(Xe) = A to

be the left action φ̃q.
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Cuntz-Nica-Pimsner covariant representations

Definition

(Sims-Yeend (2007)) A Nica covariant representation
ψ : X → B is Cuntz-Nica-Pimsner covariant (CNP-covariant) if
∀F ⊂ P finite

∀Tp ∈ K(Xp), p ∈ F ⇒
∑

p∈F ψ
(p)(Tp) = 0B .∑

p∈F ι̃
q
p(Tp) = 0 for large q

True for large q means for given s ∈ P there is r ≥ s such that
statement is true for all q ≥ r .

Theorem

(Sims-Yeend 2007) If all left actions φ̃q for q ∈ P are injective,
the canonical CNP-representation jX : X → NOX is injective.
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The gauge-coaction

Proposition

Let (G ,P) quasi-lattice ordered and X compactly aligned
product system over P. There is a (full) coaction δ of G on
Tcov(X ) s. t. δ(iX (x)) = iX (x)⊗ iG (d(x)),∀x ∈ X .

This follows from Fowler’s work in case of Tcov(X ) defined for
essential bimodules.

Proposition

There is a coaction ν of G on NOX making the diagram
commute:

Tcov(X )

δ
��

qCNP // NOX

ν

��
Tcov(X )⊗ C ∗(G )

qCNP⊗id// NOX ⊗C ∗(G )
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Gauge-invariant uniqueness property (part I)

NOX is universal for CNP-covariant rep.’s ψ : X → B.

Ideally,
a gauge-invariant uniqueness property (GIUP) for NOX should
be a tool that allows us to establish injectivity of
Πψ : NOX → B, hence identifications of NOX with some
given C ∗-algebra B.
Traditional line of proving GIUP: first, assuming injectivity of
Πψ|jX (A), show that the homomorphism Πψ given by the
universal property of NOX is injective on the fixed-point
algebra under the gauge-coaction. Then try to use intertwining
conditional expectations (assuming B admits a coaction
compatible with ν) to show Πψ is injective.
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Injectivity on the core

The core of Tcov(X ) is

F := {iX (x)iX (y)∗ | x , y ∈ X , d(x) = d(y)} = (Tcov(X ))δ.

Theorem

(Carlsen-L-Sims-Vittadello) Let (G ,P) be quasi-lattice ordered
group and X a compactly aligned product system over P of
right-Hilbert A–A bimodules. Assume either that the left
actions φp on the fibres are all injective, or that P is directed
and all φ̃q are injective. Let ψ : X → B be a CNP-covariant
rep. of X in a C ∗-algebra B. Then the induced homomorphism
Πψ : NOX → B is injective on qCNP(F) if and only if ψ is
injective as a Toeplitz representation.
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NOX need not have the gauge-invariant uniqueness
property

Problem

Amenability considerations show that the gauge-invariant
uniqueness property can not hold in general.

Explanation: suppose (G ,P) quasi-lattice ordered s.t. G
non-amenable and p ∨ q <∞ for all p ∈ P (e.g. finite-type
Artin groups); let Xp = C, then NOX = C ∗(G ), the canonical
surjection C ∗(G )→ C ∗r (G ) preserves the gauge coaction, is
injective on coefficient algebra (C), but is not injective.

Claim

A quotient of NOX will be helpful in understanding when the
gauge-invariant uniqueness property holds.



Co-universal
algebras for

product
systems

Nadia S.
Larsen

Product
systems, rep-
resentations,
and algebras

The gauge-
invariant
uniqueness
property (I)

The
co-universal
algebra

The gauge-
invariant
uniqueness
property (II)

Applications

NOX need not have the gauge-invariant uniqueness
property

Problem

Amenability considerations show that the gauge-invariant
uniqueness property can not hold in general.

Explanation: suppose (G ,P) quasi-lattice ordered s.t. G
non-amenable and p ∨ q <∞ for all p ∈ P (e.g. finite-type
Artin groups); let Xp = C, then NOX = C ∗(G ), the canonical
surjection C ∗(G )→ C ∗r (G ) preserves the gauge coaction, is
injective on coefficient algebra (C), but is not injective.

Claim

A quotient of NOX will be helpful in understanding when the
gauge-invariant uniqueness property holds.



Co-universal
algebras for

product
systems

Nadia S.
Larsen

Product
systems, rep-
resentations,
and algebras

The gauge-
invariant
uniqueness
property (I)

The
co-universal
algebra

The gauge-
invariant
uniqueness
property (II)

Applications

NOX need not have the gauge-invariant uniqueness
property

Problem

Amenability considerations show that the gauge-invariant
uniqueness property can not hold in general.

Explanation: suppose (G ,P) quasi-lattice ordered s.t. G
non-amenable and p ∨ q <∞ for all p ∈ P (e.g. finite-type
Artin groups); let Xp = C, then NOX = C ∗(G ), the canonical
surjection C ∗(G )→ C ∗r (G ) preserves the gauge coaction, is
injective on coefficient algebra (C), but is not injective.

Claim

A quotient of NOX will be helpful in understanding when the
gauge-invariant uniqueness property holds.



Co-universal
algebras for

product
systems

Nadia S.
Larsen

Product
systems, rep-
resentations,
and algebras

The gauge-
invariant
uniqueness
property (I)

The
co-universal
algebra

The gauge-
invariant
uniqueness
property (II)

Applications

Some notation

Recall that δ on Tcov(X ) satisfies δ(iX (x)) = iX (x)⊗ iG (d(x))
for all x ∈ X .

Definition

Given (G ,P) quasi-lattice ordered and X a product system
over P, a Toeplitz representation ψ : X → B is
gauge-compatible if there is a coaction β of G on B s. t.
β(ψ(x)) = ψ(x)⊗ iG (d(x)) for all x.

Recall that jX : X → NOX is injective if all left actions φ̃q are
injective (Sims-Yeend). This hypothesis holds when either all
left actions φp on Xp are injective, or every bounded subset of
P has a maximal element.
P is directed if p ∨ q <∞ for all p, q ∈ P (Nica).
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Main theorem (Carlsen-L-Sims-Vittadello)

Hypotheses: Let (G ,P) be quasi-lattice ordered and X a
compactly aligned product system over P of Hilbert A–A
bimodules. Suppose either that the left action φp on each fibre
is injective, or that P is directed and all φ̃q are injective.

• Existence. There exists (NOr
X , j

r
X , ν

n) s.t.
j r
X : X → NOr

X is an injective CNP-covariant rep. which is
gauge-compatible via the normal coaction νn of G on
NOr

X .

• Co-universal property. If ψ : X → B is an injective
gauge-compatible Nica covariant rep. whose image
generates B then there is a surjective ∗-homomorphism
φ : B → NOr

X s.t. φ ◦ ψ = j r
X .

• Uniqueness. If (C , ρ, γ) satisfies the same conditions,
there is an isomorphism φ : C → NOr

X s.t. j r
X = φ ◦ ρ.
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Gauge-invariant uniqueness property (part II)

Let (G ,P) be quasi-lattice ordered, X compactly aligned, and
assume all φ̃q are injective. We say that NOX has the
gauge-invariant uniqueness property provided that

a surjective
∗-homomorphism φ : NOX → B is injective if and only if:

1 there is a coaction β of G on B such that
β ◦ φ = (φ⊗ idC∗(G)) ◦ ν;

2 the homomorphism φ|jX (A) is injective.

Important feature

NOX will satisfy the gauge-invariant uniqueness property
precisely when it is isomorphic to its quotient NOr

X .

So NOr
X defined by its co-universal property involving only

Nica covariant reps. is more ”accessible” an object than NOX

given by its universal property involving the difficult to check
CNP-covariance.
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An aside: coactions and Fell bundles

If δ is a coaction of a discrete group G on a C ∗-algebra A, let
Aδg := { a ∈ A | δ(a) = a⊗ iG (g) } for g ∈ G . The disjoint

union of Aδg × {g} for g ∈ G forms a Fell bundle A over G
(Quigg 1996).

Associated to a Fell bundle A there are a full
cross sectional algebra C ∗(A) (Fell-Doran), and a reduced cross
sectional algebra C ∗r (A) – independently studied by Exel (1997)
and by Quigg (1996) – and shown to coincide by Echterhoff
and Quigg (1999). When A is the Fell bundle associated to a
cosystem (A,G , δ), we let Ar denote the reduced cross sectional
algebra; there are a surjective homomorphism λA : A→ Ar

(Exel) and a normal coaction δn on Ar s.t. δn(ag ) = ag ⊗ iG (g)
for ag ∈ Aδg (Quigg). Normal means (id⊗λG ) ◦ δn is injective.
In fact, δn is the normalisation of δ (Echterhoff-Quigg).
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(Quigg 1996). Associated to a Fell bundle A there are a full
cross sectional algebra C ∗(A) (Fell-Doran), and a reduced cross
sectional algebra C ∗r (A) – independently studied by Exel (1997)
and by Quigg (1996) – and shown to coincide by Echterhoff
and Quigg (1999). When A is the Fell bundle associated to a
cosystem (A,G , δ), we let Ar denote the reduced cross sectional
algebra; there are a surjective homomorphism λA : A→ Ar

(Exel) and a normal coaction δn on Ar s.t. δn(ag ) = ag ⊗ iG (g)
for ag ∈ Aδg (Quigg). Normal means (id⊗λG ) ◦ δn is injective.

In fact, δn is the normalisation of δ (Echterhoff-Quigg).
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Equivalent conditions

Thus, from (NOX ,G , ν) we form a Fell bundle N , we let NOr
X

be its reduced cross sectional algebra, and we let νn be the
normal coaction on NOr

X obtained as the normalisation of ν.

From the main theorem we derive the following:

Corollary

Given (G ,P) and X , suppose either that the left action φp on
each Xp is injective, or that P is directed and all φ̃q are
injective. TFAE:

1 NOX has the gauge-invariant uniqueness property;

2 the coaction ν on NOX is normal;

3 the Fell bundle
(
(NOX )νg × {g}

)
g∈G

is amenable (in

Exel’s sense);

4 λN : NOX → NOr
X is an isomorphism.
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Conditions that imply GIUP

Corollary

NOX has the gauge-invariant uniqueness property in the
following cases:

1 G is exact and the coaction δ on Tcov(X ) is normal.

2 G is exact and there is a quasi-lattice ordered group
(G,P) with G amenable and a homomorphism π : G → G
such that whenever g , h ∈ G satisfy g ∨ h <∞, we have

π(g) ∨ π(h) = π(g ∨ h) and π(g) = π(h) =⇒ g = h.

3 G is amenable.

4 The Fell bundle B = (Tcov(X )δg × {g})g∈G has the
approximation property.

5 The Fell bundle N =
(
(NOX )νg × {g}

)
g∈G

has the
approximation property.
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Boundary quotient algebras

Let (G ,P) be quasi-lattice ordered with Nica spectrum Ω (all
hereditary directed sets ω ⊂ G with e ∈ ω). There is a partial
action α of G on the boundary δΩ of Ω (Nica, Laca,
Crisp-Laca, Exel-Laca-Quigg).

Let Xp = C for all p ∈ P with
1p denoting 1; this is compactly aligned, left actions are
injective, and φ̃q are injective (Sims-Yeend). C0(∂Ω) or

α G is
generated by an injective Nica covariant rep. ψ (send ψ to
{ψ(1p) | p ∈ P}). Further, ψ is gauge-compatible; just use
the canonical coaction β on C0(∂Ω) or

α G . The main theorem
gives a surj. homom. φ : C0(∂Ω) or

α G → NOr
X which

intertwines νn and β. We can show that φ is injective. This
implies that the associated Fell bundles are isomorphic.
Therefore C0(∂Ω) oα G ∼= NOX .
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Crossed products

Important feature

NOX behaves like a full crossed product and NOr
X like a

reduced one.

Let (G ,P) be quasi-lattice ordered, α : G → Aut(A) be an
action of G on a C ∗-algebra A. Fowler constructed a
compactly aligned product system X = Xα over the opposite
semigroup Pop with fibers Xp := αp A, p ∈ P.
We assume that P is directed and that it generates G as a
group. By the main theorem, there is an isomorphism
φ : A×r

α G → NOr
X s.t. νn ◦ φ = (φ⊗ idC∗(G)) ◦ α̂n, with α̂n

canonical (normal) coaction on the reduced crossed product.
Use that α̂n is normal to show that φ is injective.

Corollary

A×α G ∼= NOX .
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We assume that P is directed and that it generates G as a
group. By the main theorem, there is an isomorphism
φ : A×r

α G → NOr
X s.t. νn ◦ φ = (φ⊗ idC∗(G)) ◦ α̂n, with α̂n

canonical (normal) coaction on the reduced crossed product.
Use that α̂n is normal to show that φ is injective.

Corollary

A×α G ∼= NOX .
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Yeend’s topological higher-rank graphs (THRG)

For k ∈ N, a topological k-graph is a pair (Λ, d) consisting of:
(1) a small category Λ endowed with a second countable
locally compact Hausdorff topology s.t. the composition map is
continuous and open, the range map r is continuous and the
source map s is a local homeomorphism;

and (2) a continuous
functor d : Λ→ Nk , called the degree map, satisfying the
factorisation property: if d(λ) = m + n then there exist unique
µ, ν with d(µ) = m, d(ν) = n and λ = µν.
To a compactly aligned topological higher-rank graph Yeend
associated two groupoids GΛ and GΛ, hence two C ∗-algebras

• C ∗(GΛ) (model for a Toeplitz algebra)

• C ∗(GΛ) (model for a Cuntz-Krieger algebra).

No gauge-invariant uniqueness thm. is established for C ∗(GΛ).
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NOX : the Cuntz-Krieger algebra of Λ

Given a compactly aligned topological higher rank graph Λ, we
construct a compactly aligned (involves non-trivial arguments!)
product system X over Nk with fibers Xn as completions of
Cc(Λn).

The gauge-invariant uniqueness property holds, and therefore
NOX is co-universal amongst all C ∗-algebras generated by
Nica covariant reps. of X which carry a gauge-action of Tk .
We construct ψ : X → C ∗(GΛ) Nica covariant and generating
the image algebra.
The co-universal property implies that NOX is the unique
quotient of Yeend’s Toeplitz alg. satisfying a gauge-invariant
uniqueness property:

Tcov(X )

qCNP

��

ψ∗ // C ∗(GΛ)

q

��
NOX C ∗(GΛ)

φ
oo
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Key results

Lemma

Let (G ,P) be quasi-lattice ordered group and X a compactly
aligned product system over P of right-Hilbert A–A bimodules.
Suppose either that the left action on each fibre is by injective
homomorphisms, or that P is directed. Let ψ : X → B be an
injective Nica covariant rep. of X . Fix a finite subset F ⊂ P
and fix operators Tp ∈ K(Xp) for each p ∈ F satisfying∑

p∈F ψ
(p)(Tp) = 0. Then

∑
p∈F ι̃

s
p(Tp) = 0 for large s.

Proposition

With the hypotheses of the lemma, let ψ∗ : Tcov(X )→ B be
the homomorphism characterised by ψ = ψ∗ ◦ iX . Then
ker(ψ∗) ∩ F ⊂ ker(qCNP).
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More key results

To prove the proposition, write

F =
⋃

F∈P∨fin(P) BF ,

with BF =
{ ∑

p∈F i
(p)
X (Tp) | Tp ∈ K(Xp) for each p ∈ F

}
.

Show that BF is a C ∗-algebra for each finite ∨-closed subset of
P.
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