> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Co-universal algebras for product systems

Nadia S. Larsen

University of Oslo Joint work with T. Carlsen, A. Sims and S. Vittadello

> GPOTS - Boulder June 5, 2009

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Outline

- Cuntz-Pimsner algebras
- Product systems of Hilbert bimodules and the Toeplitz algebra $\mathcal{T}_{\rm cov}(X)$
- Sims-Yeend's \mathcal{NO}_X
- The core of $\mathcal{T}_{\mathrm{cov}}(X)$
- The C^* -algebra \mathcal{NO}^r_X and its co-universal property
- The gauge-invariant uniqueness property
- Applications

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Hilbert bimodules

Recall (Pimsner 1997): a right-Hilbert module X over a C^* -algebra A is an A–A bimodule if there is *-homomorphism (left action) $\phi : A \to \mathcal{L}(X)$.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Hilbert bimodules

Recall (Pimsner 1997): a right-Hilbert module X over a C^* -algebra A is an A–A bimodule if there is *-homomorphism (left action) $\phi : A \to \mathcal{L}(X)$.

• Toeplitz representation: a compatible pair of $\psi : X \to B$ linear and $\pi : A \to B$ a *-homomorphism.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Hilbert bimodules

Recall (Pimsner 1997): a right-Hilbert module X over a C^* -algebra A is an A–A bimodule if there is *-homomorphism (left action) $\phi : A \to \mathcal{L}(X)$.

- Toeplitz representation: a compatible pair of $\psi: X \to B$ linear and $\pi: A \to B$ a *-homomorphism.
- Cuntz-Pimsner covariance means that (ψ, π) is compatible with a canonical homomorphism π⁽¹⁾ : K(X) → B.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Hilbert bimodules

Recall (Pimsner 1997): a right-Hilbert module X over a C^* -algebra A is an A–A bimodule if there is *-homomorphism (left action) $\phi : A \to \mathcal{L}(X)$.

- Toeplitz representation: a compatible pair of $\psi: X \to B$ linear and $\pi: A \to B$ a *-homomorphism.
- Cuntz-Pimsner covariance means that (ψ, π) is compatible with a canonical homomorphism π⁽¹⁾ : K(X) → B.
- Toeplitz algebra \mathcal{T}_X : universal for Toeplitz reps.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Recall (Pimsner 1997): a right-Hilbert module X over a

Hilbert bimodules

- *C*^{*}-algebra *A* is an *A*–*A* bimodule if there is *-homomorphism (left action) $\phi : A \to \mathcal{L}(X)$.
 - Toeplitz representation: a compatible pair of $\psi: X \to B$ linear and $\pi: A \to B$ a *-homomorphism.
 - Cuntz-Pimsner covariance means that (ψ, π) is compatible with a canonical homomorphism π⁽¹⁾ : K(X) → B.
 - Toeplitz algebra \mathcal{T}_X : universal for Toeplitz reps.
 - Cuntz-Pimsner algebra \mathcal{O}_X : universal for CP-cov. reps.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Hilbert bimodules

Recall (Pimsner 1997): a right-Hilbert module X over a C^* -algebra A is an A–A bimodule if there is *-homomorphism (left action) $\phi : A \to \mathcal{L}(X)$.

- Toeplitz representation: a compatible pair of $\psi : X \to B$ linear and $\pi : A \to B$ a *-homomorphism.
- Cuntz-Pimsner covariance means that (ψ, π) is compatible with a canonical homomorphism π⁽¹⁾ : K(X) → B.
- Toeplitz algebra \mathcal{T}_X : universal for Toeplitz reps.
- Cuntz-Pimsner algebra \mathcal{O}_X : universal for CP-cov. reps.
- Uniqueness theorems for \mathcal{T}_X (Fowler-Raeburn 1999.)

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Hilbert bimodules

Recall (Pimsner 1997): a right-Hilbert module X over a C^* -algebra A is an A–A bimodule if there is *-homomorphism (left action) $\phi : A \to \mathcal{L}(X)$.

- Toeplitz representation: a compatible pair of $\psi: X \to B$ linear and $\pi: A \to B$ a *-homomorphism.
- Cuntz-Pimsner covariance means that (ψ, π) is compatible with a canonical homomorphism π⁽¹⁾ : K(X) → B.
- Toeplitz algebra \mathcal{T}_X : universal for Toeplitz reps.
- Cuntz-Pimsner algebra \mathcal{O}_X : universal for CP-cov. reps.
- Uniqueness theorems for \mathcal{T}_X (Fowler-Raeburn 1999.)

Important feature

Katsura'a modified definition of \mathcal{O}_X ensures that the canonical covariant rep. $X \to \mathcal{O}_X$ is injective and \mathcal{O}_X satisfies a gauge-invariant uniqueness property with respect to the canonical gauge-action of \mathbb{T} .

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Semigroups & product systems of Hilbert bimodules

Product system X over a semigroup P (discrete, unital) is a semigroup with a homomorphism $d: X \to P$ s.t. $X_p := d^{-1}(p)$ is a right-Hilbert A-A bimodule for $p \in P$, $X_e = {}_AA_A$,

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Semigroups & product systems of Hilbert bimodules

Product system X over a semigroup P (discrete, unital) is a semigroup with a homomorphism $d: X \to P$ s.t. $X_p := d^{-1}(p)$ is a right-Hilbert A–A bimodule for $p \in P$, $X_e = {}_AA_A$, and the multiplication on X gives isomorphisms $X_p \otimes_A X_q \cong X_{pq}$ for $p, q \in P \setminus \{e\}$ and the right and left actions of $X_e = A$ on each X_p (Arveson, Dinh, Fowler).

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Semigroups & product systems of Hilbert bimodules

Product system X over a semigroup P (discrete, unital) is a semigroup with a homomorphism $d: X \to P$ s.t. $X_p := d^{-1}(p)$ is a right-Hilbert A-A bimodule for $p \in P$, $X_e = {}_AA_A$, and the multiplication on X gives isomorphisms $X_p \otimes_A X_q \cong X_{pq}$ for $p, q \in P \setminus \{e\}$ and the right and left actions of $X_e = A$ on each X_p (Arveson, Dinh, Fowler). Let $\phi_p : A \to \mathcal{L}(X_p)$ denote the left action on X_p , for $p \in P$.

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II

Applications

Semigroups & product systems of Hilbert bimodules

Product system X over a semigroup P (discrete, unital) is a semigroup with a homomorphism $d: X \to P$ s.t. $X_p := d^{-1}(p)$ is a right-Hilbert A–A bimodule for $p \in P$, $X_e = {}_AA_A$, and the multiplication on X gives isomorphisms $X_p \otimes_A X_q \cong X_{pq}$ for $p, q \in P \setminus \{e\}$ and the right and left actions of $X_e = A$ on each X_p (Arveson, Dinh, Fowler). Let $\phi_p : A \to \mathcal{L}(X_p)$ denote the left action on X_p , for $p \in P$. A Toeplitz representation of X is $\psi : X \to B$ s.t.

1
$$\psi_p := \psi|_{X_p} \to B$$
 linear, $\forall p$; ψ_e homomorphism;

2 ψ is multiplicative;

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Semigroups & product systems of Hilbert bimodules

Product system X over a semigroup P (discrete, unital) is a semigroup with a homomorphism $d: X \to P$ s.t. $X_p := d^{-1}(p)$ is a right-Hilbert A–A bimodule for $p \in P$, $X_e = {}_AA_A$, and the multiplication on X gives isomorphisms $X_p \otimes_A X_q \cong X_{pq}$ for $p, q \in P \setminus \{e\}$ and the right and left actions of $X_e = A$ on each X_p (Arveson, Dinh, Fowler). Let $\phi_p : A \to \mathcal{L}(X_p)$ denote the left action on X_p , for $p \in P$. A Toeplitz representation of X is $\psi : X \to B$ s.t.

1
$$\psi_p := \psi|_{X_p} \to B$$
 linear, $\forall p$; ψ_e homomorphism;

- **2** ψ is multiplicative;
- ψ is *injective* if ψ_e injective (hence all ψ_p isometric.)

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Semigroups & product systems of Hilbert bimodules

Product system X over a semigroup P (discrete, unital) is a semigroup with a homomorphism $d: X \to P$ s.t. $X_p := d^{-1}(p)$ is a right-Hilbert A–A bimodule for $p \in P$, $X_e = {}_AA_A$, and the multiplication on X gives isomorphisms $X_p \otimes_A X_q \cong X_{pq}$ for $p, q \in P \setminus \{e\}$ and the right and left actions of $X_e = A$ on each X_p (Arveson, Dinh, Fowler). Let $\phi_p : A \to \mathcal{L}(X_p)$ denote the left action on X_p , for $p \in P$. A Toeplitz representation of X is $\psi : X \to B$ s.t.

1
$$\psi_p := \psi|_{X_p} \to B$$
 linear, $\forall p$; ψ_e homomorphism;

2 ψ is multiplicative;

 ψ is *injective* if ψ_e injective (hence all ψ_p isometric.) The *Toeplitz algebra* \mathcal{T}_X of X is the universal C*-algebra for Toeplitz reps. of X; let $i : X \to \mathcal{T}_X$ be the universal Toeplitz rep.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Compactly aligned product systems

Quasi-lattice ordered group (Nica 1992). Let *G* a discrete group, *P* subsemigroup with $P \cap P^{-1} = \{e\}$, and define $g \le h \iff g^{-1}h \in P$ (partial order). Then (G, P) is quasi-lattice ordered if for all $p, q \in G$ with common upper bound in *P* there is a lub $p \lor q$ in *P*. Write $p \lor q < \infty$ when p, q have a common upper bound, else write $p \lor q = \infty$.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Compactly aligned product systems

Quasi-lattice ordered group (Nica 1992). Let G a discrete group, P subsemigroup with $P \cap P^{-1} = \{e\}$, and define $g \leq h \iff g^{-1}h \in P$ (partial order). Then (G, P) is quasi-lattice ordered if for all $p, q \in G$ with common upper bound in P there is a lub $p \lor q$ in P. Write $p \lor q < \infty$ when p, q have a common upper bound, else write $p \lor q = \infty$. Notation: for $p \leq t$, $p \neq e$ let $\iota_p^t : \mathcal{L}(X_p) \to \mathcal{L}(X_t)$ be defined by $\iota_p^t(S)(xy) = (Sx)y$ for $S \in \mathcal{L}(X_p)$, $x \in X_p$ and $t \in X_{p^{-1}t}$; let $\iota_e^t : \mathcal{K}(X_e) \to \mathcal{L}(X_t)$ be the left action ϕ_t .

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Compactly aligned product systems

Quasi-lattice ordered group (Nica 1992). Let G a discrete group, P subsemigroup with $P \cap P^{-1} = \{e\}$, and define $g \leq h \iff g^{-1}h \in P$ (partial order). Then (G, P) is quasi-lattice ordered if for all $p, q \in G$ with common upper bound in P there is a lub $p \lor q$ in P. Write $p \lor q < \infty$ when p, q have a common upper bound, else write $p \lor q = \infty$. Notation: for $p \leq t$, $p \neq e$ let $\iota_p^t : \mathcal{L}(X_p) \to \mathcal{L}(X_t)$ be defined by $\iota_p^t(S)(xy) = (Sx)y$ for $S \in \mathcal{L}(X_p)$, $x \in X_p$ and $t \in X_{p^{-1}t}$; let $\iota_e^t : \mathcal{K}(X_e) \to \mathcal{L}(X_t)$ be the left action ϕ_t . A product system X over (G, P) is compactly aligned (Fowler 2002) if

$$\mathcal{K}_{p}^{p\vee q}(S)\iota_{q}^{p\vee q}(T)\in\mathcal{K}(X_{p\vee q}),$$

for all $S \in \mathcal{K}(X_p)$, $T \in \mathcal{K}(X_q)$, $p \lor q < \infty$, $p, q \in P$. (Fowler assumes essential bimodules, we don't.)

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Nica covariant representations of product systems

Recall (Pimsner): when ψ_p is a Toeplitz representation, there is a homomorphism $\psi^{(p)} \colon \mathcal{K}(X_p) \to B$ s.t. $\psi^{(p)}(x \otimes y^*) = \psi_p(x)\psi_p(y)^*$ for all $x, y \in X_p$, $p \in P$.

Nadia S.

Nica covariant representations of product systems

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Recall (Pimsner): when ψ_p is a Toeplitz representation, there is a homomorphism $\psi^{(p)} : \mathcal{K}(X_p) \to B$ s.t. $\psi^{(p)}(x \otimes y^*) = \psi_p(x)\psi_p(y)^*$ for all $x, y \in X_p$, $p \in P$. Let (G, P) be quasi-lattice ordered and X a compactly aligned product system over P (thus $\iota_p^{p \vee q}(S)\iota_q^{p \vee q}(T) \in \mathcal{K}(X_{p \vee q})$ when $S \in \mathcal{K}(X_p)$, $T \in \mathcal{K}(X_q)$ and $p \vee q < \infty$.)

Nica covariant representations of product systems

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Recall (Pimsner): when ψ_p is a Toeplitz representation, there is a homomorphism $\psi^{(p)} : \mathcal{K}(X_p) \to B$ s.t. $\psi^{(p)}(x \otimes y^*) = \psi_p(x)\psi_p(y)^*$ for all $x, y \in X_p, p \in P$. Let (G, P) be quasi-lattice ordered and X a compactly aligned product system over P (thus $\iota_p^{p \vee q}(S)\iota_q^{p \vee q}(T) \in \mathcal{K}(X_{p \vee q})$ when $S \in \mathcal{K}(X_p), T \in \mathcal{K}(X_q)$ and $p \vee q < \infty$.) A Toeplitz rep. $\psi : X \to B$ is Nica covariant provided

Nadia S.

Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Nica covariant representations of product systems

Recall (Pimsner): when ψ_p is a Toeplitz representation, there is a homomorphism $\psi^{(p)} \colon \mathcal{K}(X_p) \to B$ s.t. $\psi^{(p)}(x \otimes y^*) = \psi_p(x)\psi_p(y)^*$ for all $x, y \in X_p$, $p \in P$. Let (G, P) be quasi-lattice ordered and X a compactly aligned product system over P (thus $\iota_p^{p \lor q}(S)\iota_q^{p \lor q}(T) \in \mathcal{K}(X_{p \lor q})$ when $S \in \mathcal{K}(X_p)$, $T \in \mathcal{K}(X_q)$ and $p \lor q < \infty$.) A Toeplitz rep. $\psi : X \to B$ is Nica covariant provided

$$\psi^{(p)}(S)\psi^{(q)}(T) = \begin{cases} \psi^{(p\vee q)}(\iota_p^{p\vee q}(S)\iota_q^{p\vee q}(T)) & \text{if } p \vee q < \infty \\ 0 & \text{otherwise} \end{cases}$$

for all $S \in \mathcal{K}(X_p)$ and $T \in \mathcal{K}(X_q)$.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

The C*-algebra $\mathcal{T}_{\mathrm{cov}}(X)$

Let (G, P) be quasi-lattice ordered and X a compactly aligned product system over P.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

The \mathcal{C}^* -algebra $\mathcal{T}_{ ext{cov}}(X)$

Let (G, P) be quasi-lattice ordered and X a compactly aligned product system over P. Let \mathcal{I} be the ideal of \mathcal{T}_X generated by

$$i^{(p)}(S)i^{(q)}(T) - i^{(p\vee q)}(\iota_p^{p\vee q}(S)\iota_q^{p\vee q}(T)),$$

for $p, q \in P$, $S \in \mathcal{K}(X_p)$, $T \in \mathcal{K}(X_q)$, with $\iota_p^{p \lor q}(S) \iota_q^{p \lor q}(T) = 0$ if $p \lor q = \infty$. Define $\mathcal{T}_{cov}(X) := \mathcal{T}_X/\mathcal{I}$. (Note: this def. bypasses Fowler's assumption of all X_p essential.)

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

The C^* -algebra $\mathcal{T}_{ ext{cov}}(X)$

Let (G, P) be quasi-lattice ordered and X a compactly aligned product system over P. Let \mathcal{I} be the ideal of \mathcal{T}_X generated by

$$i^{(p)}(S)i^{(q)}(T) - i^{(p\vee q)}(\iota_p^{p\vee q}(S)\iota_q^{p\vee q}(T)),$$

for $p, q \in P$, $S \in \mathcal{K}(X_p)$, $T \in \mathcal{K}(X_q)$, with $\iota_p^{p \lor q}(S)\iota_q^{p \lor q}(T) = 0$ if $p \lor q = \infty$. Define $\mathcal{T}_{cov}(X) := \mathcal{T}_X/\mathcal{I}$. (Note: this def. bypasses Fowler's assumption of all X_p essential.) Let $i_X : X \to \mathcal{T}_{cov}(X)$ be the composition of $\mathcal{T}_X \to \mathcal{T}_{cov}(X)$ with universal Toeplitz rep. $X \to \mathcal{T}_X$.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

The C^* -algebra $\mathcal{T}_{ ext{cov}}(X)$

Let (G, P) be quasi-lattice ordered and X a compactly aligned product system over P. Let \mathcal{I} be the ideal of \mathcal{T}_X generated by

$$i^{(p)}(S)i^{(q)}(T) - i^{(p\vee q)}(\iota_p^{p\vee q}(S)\iota_q^{p\vee q}(T)),$$

for $p, q \in P$, $S \in \mathcal{K}(X_p)$, $T \in \mathcal{K}(X_q)$, with $\iota_p^{p \lor q}(S)\iota_q^{p \lor q}(T) = 0$ if $p \lor q = \infty$. Define $\mathcal{T}_{cov}(X) := \mathcal{T}_X/\mathcal{I}$. (Note: this def. bypasses Fowler's assumption of all X_p essential.) Let $i_X : X \to \mathcal{T}_{cov}(X)$ be the composition of $\mathcal{T}_X \to \mathcal{T}_{cov}(X)$ with universal Toeplitz rep. $X \to \mathcal{T}_X$. Universal property of $(\mathcal{T}_{cov}(X), i_X)$: given $\psi : X \to B$ Nica covariant rep., there is a *-homom. $\psi_* : \mathcal{T}_{cov}(X) \to B$ s.t. $\psi_* \circ i_X = \psi$.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

The \mathcal{C}^* -algebra $\mathcal{T}_{ ext{cov}}(X)$

Let (G, P) be quasi-lattice ordered and X a compactly aligned product system over P. Let \mathcal{I} be the ideal of \mathcal{T}_X generated by

$$i^{(p)}(S)i^{(q)}(T) - i^{(p\vee q)}(\iota_p^{p\vee q}(S)\iota_q^{p\vee q}(T)),$$

for $p, q \in P$, $S \in \mathcal{K}(X_p)$, $T \in \mathcal{K}(X_q)$, with $\iota_p^{p \lor q}(S)\iota_q^{p \lor q}(T) = 0$ if $p \lor q = \infty$. Define $\mathcal{T}_{cov}(X) := \mathcal{T}_X/\mathcal{I}$. (Note: this def. bypasses Fowler's assumption of all X_p essential.) Let $i_X : X \to \mathcal{T}_{cov}(X)$ be the composition of $\mathcal{T}_X \to \mathcal{T}_{cov}(X)$ with universal Toeplitz rep. $X \to \mathcal{T}_X$. Universal property of $(\mathcal{T}_{cov}(X), i_X)$: given $\psi : X \to B$ Nica covariant rep., there is a *-homom. $\psi_* : \mathcal{T}_{cov}(X) \to B$ s.t. $\psi_* \circ i_X = \psi$. Spanning property:

 $\mathcal{T}_{\mathrm{cov}}(X) = \overline{\mathrm{span}} \{ i_X(x) i_X(y)^* \mid x, y \in X \}.$

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Sims-Yeends' Cuntz-Nica-Pimsner algebra \mathcal{NO}_X

Question

Which C*-algebra associated to a product system X captures the features of the Cuntz-Pimsner algebra of a single bimodule?

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Sims-Yeends' Cuntz-Nica-Pimsner algebra \mathcal{NO}_X

Question

Which C^* -algebra associated to a product system X captures the features of the Cuntz-Pimsner algebra of a single bimodule?

Fowler defined an algebra \mathcal{O}_X as a quotient of \mathcal{T}_X . Some problems: injectivity of $X \to \mathcal{O}_X$ is not known, and \mathcal{O}_X not a quotient of $\mathcal{T}_{cov}(X)$ when X compactly-aligned.

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Sims-Yeends' Cuntz-Nica-Pimsner algebra \mathcal{NO}_X

Question

Which C^* -algebra associated to a product system X captures the features of the Cuntz-Pimsner algebra of a single bimodule?

Fowler defined an algebra \mathcal{O}_X as a quotient of \mathcal{T}_X . Some problems: injectivity of $X \to \mathcal{O}_X$ is not known, and \mathcal{O}_X not a quotient of $\mathcal{T}_{cov}(X)$ when X compactly-aligned.

Answer

For X compactly aligned product system over (G, P) quasi-lattice ordered, Sims and Yeend introduced a new Cuntz-Pimsner condition under the name Cuntz-Nica-Pimsner covariance.

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Sims-Yeends' Cuntz-Nica-Pimsner algebra \mathcal{NO}_X

Question

Which C^* -algebra associated to a product system X captures the features of the Cuntz-Pimsner algebra of a single bimodule?

Fowler defined an algebra \mathcal{O}_X as a quotient of \mathcal{T}_X . Some problems: injectivity of $X \to \mathcal{O}_X$ is not known, and \mathcal{O}_X not a quotient of $\mathcal{T}_{cov}(X)$ when X compactly-aligned.

Answer

For X compactly aligned product system over (G, P) quasi-lattice ordered, Sims and Yeend introduced a new Cuntz-Pimsner condition under the name Cuntz-Nica-Pimsner covariance.

Definition

(Sims-Yeend (2007)) \mathcal{NO}_X is the universal C^{*}-algebra generated by a Cuntz-Nica-Pimsner covariant rep. of X.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Towards Cuntz-Nica-Pimsner covariance

Let (G, P) be quasi-lattice ordered and X compactly aligned product system over P. Denote $\phi_p : A \to \mathcal{L}(X_p)$ for $p \in P$ (left actions). Let $I_e = A$ and $I_r := \bigcap_{e < s \le r} \ker(\phi_s)$.

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Towards Cuntz-Nica-Pimsner covariance

Let (G, P) be quasi-lattice ordered and X compactly aligned product system over P. Denote $\phi_p : A \to \mathcal{L}(X_p)$ for $p \in P$ (left actions). Let $I_e = A$ and $I_r := \bigcap_{e < s \le r} \ker(\phi_s)$. Recall that from a Hilbert A-A bimodule Y and an ideal J of A one can form a new Hilbert bimodule

$$Y \cdot J := \{ y \cdot a \mid y \in Y, a \in J \}.$$

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Towards Cuntz-Nica-Pimsner covariance

Let (G, P) be quasi-lattice ordered and X compactly aligned product system over P. Denote $\phi_p : A \to \mathcal{L}(X_p)$ for $p \in P$ (left actions). Let $I_e = A$ and $I_r := \bigcap_{e < s \le r} \ker(\phi_s)$. Recall that from a Hilbert A-A bimodule Y and an ideal J of Aone can form a new Hilbert bimodule $Y \cdot J := \{y \cdot a \mid y \in Y, a \in J\}$.

Define a new Hilbert A-A bimodule:

$$\widetilde{X}_q := \bigoplus_{p \leq q} X_p \cdot I_{p^{-1}q};$$

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Towards Cuntz-Nica-Pimsner covariance

Let (G, P) be quasi-lattice ordered and X compactly aligned product system over P. Denote $\phi_p : A \to \mathcal{L}(X_p)$ for $p \in P$ (left actions). Let $I_e = A$ and $I_r := \bigcap_{e < s \le r} \ker(\phi_s)$. Recall that from a Hilbert A-A bimodule Y and an ideal J of Aone can form a new Hilbert bimodule $Y \cdot J := \{y \cdot a \mid y \in Y, a \in J\}.$

Define a new Hilbert A-A bimodule:

$$\widetilde{X}_q := \bigoplus_{p \leq q} X_p \cdot I_{p^{-1}q};$$

Let $\tilde{\phi}_q : A \to \mathcal{L}(\widetilde{X}_q)$ be the corresponding left action.

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Towards Cuntz-Nica-Pimsner covariance

Let (G, P) be quasi-lattice ordered and X compactly aligned product system over P. Denote $\phi_p : A \to \mathcal{L}(X_p)$ for $p \in P$ (left actions). Let $I_e = A$ and $I_r := \bigcap_{e < s \le r} \ker(\phi_s)$. Recall that from a Hilbert A-A bimodule Y and an ideal J of Aone can form a new Hilbert bimodule $Y \cdot J := \{y \cdot a \mid y \in Y, a \in J\}.$

Define a new Hilbert A-A bimodule:

$$\widetilde{X}_q := \bigoplus_{p \leq q} X_p \cdot I_{p^{-1}q};$$

Let $\tilde{\phi}_q : A \to \mathcal{L}(\tilde{X}_q)$ be the corresponding left action. Define $\tilde{\iota}^q : \mathcal{L}(X_p) \to \mathcal{L}(\tilde{X}_q)$ by $\tilde{\iota}_p^q(T) = \bigoplus_{r \leq q} \iota_p^r(T)$ for $p \neq e$, and let $\tilde{\iota}_p^q(T) = 0_{\mathcal{L}(\tilde{X}_q)}$ when $p \leq q \in P$. Define $\tilde{\iota}_e^q$ on $\mathcal{K}(X_e) = A$ to be the left action $\tilde{\phi}_q$.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Cuntz-Nica-Pimsner covariant representations

Definition

(Sims-Yeend (2007)) A Nica covariant representation $\psi: X \to B$ is Cuntz-Nica-Pimsner covariant (CNP-covariant) if $\forall F \subset P$ finite $\forall T_p \in \mathcal{K}(X_p), p \in F$ $\sum_{p \in F} \tilde{\iota}_p^q(T_p) = 0$ for large q $\Rightarrow \sum_{p \in F} \psi^{(p)}(T_p) = 0_B.$

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Cuntz-Nica-Pimsner covariant representations

Definition

(Sims-Yeend (2007)) A Nica covariant representation $\psi: X \to B$ is Cuntz-Nica-Pimsner covariant (CNP-covariant) if $\forall F \subset P$ finite $\forall T_p \in \mathcal{K}(X_p), p \in F$ $\sum_{p \in F} \tilde{\iota}_p^q(T_p) = 0$ for large q $\Rightarrow \sum_{p \in F} \psi^{(p)}(T_p) = 0_B.$

True for large q means for given $s \in P$ there is $r \ge s$ such that statement is true for all $q \ge r$.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Cuntz-Nica-Pimsner covariant representations

Definition

(Sims-Yeend (2007)) A Nica covariant representation $\psi: X \to B$ is Cuntz-Nica-Pimsner covariant (CNP-covariant) if $\forall F \subset P$ finite $\forall T_p \in \mathcal{K}(X_p), p \in F$ $\sum_{p \in F} \tilde{\iota}_p^q(T_p) = 0$ for large q $\Rightarrow \sum_{p \in F} \psi^{(p)}(T_p) = 0_B.$

True for large q means for given $s \in P$ there is $r \ge s$ such that statement is true for all $q \ge r$.

Theorem

(Sims-Yeend 2007) If all left actions $\tilde{\phi}_q$ for $q \in P$ are injective, the canonical CNP-representation $j_X : X \to \mathcal{NO}_X$ is injective.

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

The gauge-coaction

Proposition

Let (G, P) quasi-lattice ordered and X compactly aligned product system over P. There is a (full) coaction δ of G on $\mathcal{T}_{cov}(X)$ s. t. $\delta(i_X(x)) = i_X(x) \otimes i_G(d(x)), \forall x \in X.$

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

The gauge-coaction

Proposition

Let (G, P) quasi-lattice ordered and X compactly aligned product system over P. There is a (full) coaction δ of G on $T_{cov}(X)$ s. t. $\delta(i_X(x)) = i_X(x) \otimes i_G(d(x)), \forall x \in X$.

This follows from Fowler's work in case of $\mathcal{T}_{cov}(X)$ defined for essential bimodules.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

The gauge-coaction

Proposition

Let (G, P) quasi-lattice ordered and X compactly aligned product system over P. There is a (full) coaction δ of G on $T_{cov}(X)$ s. t. $\delta(i_X(x)) = i_X(x) \otimes i_G(d(x)), \forall x \in X.$

This follows from Fowler's work in case of $\mathcal{T}_{cov}(X)$ defined for essential bimodules.

Proposition

There is a coaction ν of G on \mathcal{NO}_X making the diagram commute:

$$\begin{array}{c} \mathcal{T}_{\mathrm{cov}}(X) \xrightarrow{q_{\mathsf{CNP}}} \mathcal{NO}_{X} \\ \delta \\ \downarrow & \nu \\ \mathcal{T}_{\mathrm{cov}}(X) \otimes C^{*}(G) \xrightarrow{q_{\mathsf{CNP}} \otimes \mathrm{id}} \mathcal{NO}_{X} \otimes C^{*}(G) \end{array}$$

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Gauge-invariant uniqueness property (part I)

\mathcal{NO}_X is universal for CNP-covariant rep.'s $\psi: X \to B$.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Gauge-invariant uniqueness property (part I)

 \mathcal{NO}_X is universal for CNP-covariant rep.'s $\psi : X \to B$. Ideally, a gauge-invariant uniqueness property (GIUP) for \mathcal{NO}_X should be a tool that allows us to establish injectivity of $\Pi \psi : \mathcal{NO}_X \to B$, hence identifications of \mathcal{NO}_X with some given C^* -algebra B.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

 \mathcal{NO}_X is universal for CNP-covariant rep.'s $\psi: X \to B$. Ideally, a gauge-invariant uniqueness property (GIUP) for \mathcal{NO}_X should be a tool that allows us to establish injectivity of $\Pi \psi: \mathcal{NO}_X \to B$, hence identifications of \mathcal{NO}_X with some given C^* -algebra B. Traditional line of proving GIUP: first, assuming injectivity of $\Pi \psi|_{j_X(A)}$, show that the homomorphism $\Pi \psi$ given by the

universal property of \mathcal{NO}_X is injective on the fixed-point algebra under the gauge-coaction.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

 \mathcal{NO}_X is universal for CNP-covariant rep.'s $\psi: X \to B$. Ideally, a gauge-invariant uniqueness property (GIUP) for \mathcal{NO}_X should be a tool that allows us to establish injectivity of $\Pi \psi : \mathcal{NO}_X \to B$, hence identifications of \mathcal{NO}_X with some given C^* -algebra B. Traditional line of proving GIUP: first, assuming injectivity of $\Pi \psi|_{i_{\mathcal{X}}(\mathcal{A})}$, show that the homomorphism $\Pi \psi$ given by the universal property of \mathcal{NO}_X is injective on the fixed-point algebra under the gauge-coaction. Then try to use intertwining conditional expectations (assuming B admits a coaction compatible with ν) to show $\Pi \psi$ is injective.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Injectivity on the core

The core of $\mathcal{T}_{\mathrm{cov}}(X)$ is

$$\mathcal{F} := \{i_X(x)i_X(y)^* \mid x, y \in X, d(x) = d(y)\} = (\mathcal{T}_{\mathrm{cov}}(X))^{\delta}.$$

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Injectivity on the core

The core of $\mathcal{T}_{ ext{cov}}(X)$ is

$$\mathcal{F}:=\{i_X(x)i_X(y)^*\mid x,y\in X, d(x)=d(y)\}=(\mathcal{T}_{\mathrm{cov}}(X))^{\delta}.$$

Theorem

(Carlsen-L-Sims-Vittadello) Let (G, P) be quasi-lattice ordered group and X a compactly aligned product system over P of right-Hilbert A–A bimodules. Assume either that the left actions ϕ_p on the fibres are all injective, or that P is directed and all $\tilde{\phi}_q$ are injective. Let $\psi: X \to B$ be a CNP-covariant rep. of X in a C*-algebra B. Then the induced homomorphism $\Pi \psi : \mathcal{NO}_X \to B$ is injective on $q_{CNP}(\mathcal{F})$ if and only if ψ is injective as a Toeplitz representation.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Injectivity on the core

The core of $\mathcal{T}_{ ext{cov}}(X)$ is

$$\mathcal{F}:=\{i_X(x)i_X(y)^*\mid x,y\in X, d(x)=d(y)\}=(\mathcal{T}_{\mathrm{cov}}(X))^{\delta}.$$

Theorem

(Carlsen-L-Sims-Vittadello) Let (G, P) be quasi-lattice ordered group and X a compactly aligned product system over P of right-Hilbert A–A bimodules. Assume either that the left actions ϕ_p on the fibres are all injective, or that P is directed and all $\tilde{\phi}_q$ are injective. Let $\psi: X \to B$ be a CNP-covariant rep. of X in a C*-algebra B. Then the induced homomorphism $\Pi \psi : \mathcal{NO}_X \to B$ is injective on $q_{CNP}(\mathcal{F})$ if and only if ψ is injective as a Toeplitz representation.

So far so good, but...

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

$\mathcal{N} \mathcal{O}_X$ need not have the gauge-invariant uniqueness property

Problem

Amenability considerations show that the gauge-invariant uniqueness property can not hold in general.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

$\mathcal{N} \mathcal{O}_X$ need not have the gauge-invariant uniqueness property

Problem

Amenability considerations show that the gauge-invariant uniqueness property can not hold in general.

Explanation: suppose (G, P) quasi-lattice ordered s.t. Gnon-amenable and $p \lor q < \infty$ for all $p \in P$ (e.g. finite-type Artin groups); let $X_p = \mathbb{C}$, then $\mathcal{NO}_X = C^*(G)$, the canonical surjection $C^*(G) \to C^*_r(G)$ preserves the gauge coaction, is injective on coefficient algebra (\mathbb{C}) , but is not injective.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

$\mathcal{N} \mathcal{O}_X$ need not have the gauge-invariant uniqueness property

Problem

Amenability considerations show that the gauge-invariant uniqueness property can not hold in general.

Explanation: suppose (G, P) quasi-lattice ordered s.t. Gnon-amenable and $p \lor q < \infty$ for all $p \in P$ (e.g. finite-type Artin groups); let $X_p = \mathbb{C}$, then $\mathcal{NO}_X = C^*(G)$, the canonical surjection $C^*(G) \to C^*_r(G)$ preserves the gauge coaction, is injective on coefficient algebra (\mathbb{C}) , but is not injective.

Claim

A quotient of \mathcal{NO}_X will be helpful in understanding when the gauge-invariant uniqueness property holds.

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Some notation

Recall that δ on $\mathcal{T}_{cov}(X)$ satisfies $\delta(i_X(x)) = i_X(x) \otimes i_G(d(x))$ for all $x \in X$.

Nadia S.

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Recall that δ on $\mathcal{T}_{cov}(X)$ satisfies $\delta(i_X(x)) = i_X(x) \otimes i_G(d(x))$ for all $x \in X$.

Definition

Some notation

Given (G, P) quasi-lattice ordered and X a product system over P, a Toeplitz representation $\psi : X \to B$ is gauge-compatible if there is a coaction β of G on B s. t. $\beta(\psi(x)) = \psi(x) \otimes i_G(d(x))$ for all x.

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Some notation

Recall that δ on $\mathcal{T}_{cov}(X)$ satisfies $\delta(i_X(x)) = i_X(x) \otimes i_G(d(x))$ for all $x \in X$.

Definition

Given (G, P) quasi-lattice ordered and X a product system over P, a Toeplitz representation $\psi : X \to B$ is gauge-compatible if there is a coaction β of G on B s. t. $\beta(\psi(x)) = \psi(x) \otimes i_G(d(x))$ for all x.

Recall that $j_X : X \to \mathcal{NO}_X$ is injective if all left actions $\tilde{\phi}_q$ are injective (Sims-Yeend). This hypothesis holds when either all left actions ϕ_p on X_p are injective, or every bounded subset of P has a maximal element.

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Some notation

Recall that δ on $\mathcal{T}_{cov}(X)$ satisfies $\delta(i_X(x)) = i_X(x) \otimes i_G(d(x))$ for all $x \in X$.

Definition

Given (G, P) quasi-lattice ordered and X a product system over P, a Toeplitz representation $\psi : X \to B$ is gauge-compatible if there is a coaction β of G on B s. t. $\beta(\psi(x)) = \psi(x) \otimes i_G(d(x))$ for all x.

Recall that $j_X : X \to \mathcal{NO}_X$ is injective if all left actions $\tilde{\phi}_q$ are injective (Sims-Yeend). This hypothesis holds when either all left actions ϕ_p on X_p are injective, or every bounded subset of P has a maximal element.

P is directed if $p \lor q < \infty$ for all $p, q \in P$ (Nica).

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Main theorem (Carlsen-L-Sims-Vittadello)

Hypotheses: Let (G, P) be quasi-lattice ordered and X a compactly aligned product system over P of Hilbert A-A bimodules. Suppose either that the left action ϕ_p on each fibre is injective, or that P is directed and all $\tilde{\phi}_q$ are injective.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Main theorem (Carlsen-L-Sims-Vittadello)

Hypotheses: Let (G, P) be quasi-lattice ordered and X a compactly aligned product system over P of Hilbert A–A bimodules. Suppose either that the left action ϕ_p on each fibre is injective, or that P is directed and all $\tilde{\phi}_q$ are injective.

• **Existence.** There exists $(\mathcal{NO}_X^r, j_X^r, \nu^n)$ s.t.

 $j_X^r : X \to \mathcal{NO}_X^r$ is an injective CNP-covariant rep. which is gauge-compatible via the normal coaction ν^n of G on \mathcal{NO}_X^r .

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Main theorem (Carlsen-L-Sims-Vittadello)

Hypotheses: Let (G, P) be quasi-lattice ordered and X a compactly aligned product system over P of Hilbert A-A bimodules. Suppose either that the left action ϕ_p on each fibre is injective, or that P is directed and all $\tilde{\phi}_q$ are injective.

- **Existence.** There exists $(\mathcal{NO}_X^r, j_X^r, \nu^n)$ s.t.
 - $j_X^r : X \to \mathcal{NO}_X^r$ is an injective CNP-covariant rep. which is gauge-compatible via the normal coaction ν^n of G on \mathcal{NO}_X^r .
- **Co-universal property.** If $\psi : X \to B$ is an injective gauge-compatible Nica covariant rep. whose image generates *B* then there is a surjective *-homomorphism $\phi : B \to \mathcal{NO}_X^r$ s.t. $\phi \circ \psi = j_X^r$.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Main theorem (Carlsen-L-Sims-Vittadello)

Hypotheses: Let (G, P) be quasi-lattice ordered and X a compactly aligned product system over P of Hilbert A-A bimodules. Suppose either that the left action ϕ_p on each fibre is injective, or that P is directed and all $\tilde{\phi}_q$ are injective.

- **Existence.** There exists $(\mathcal{NO}_X^r, j_X^r, \nu^n)$ s.t.
 - $j_X^r : X \to \mathcal{NO}_X^r$ is an injective CNP-covariant rep. which is gauge-compatible via the normal coaction ν^n of G on \mathcal{NO}_X^r .
- **Co-universal property.** If $\psi : X \to B$ is an injective gauge-compatible Nica covariant rep. whose image generates *B* then there is a surjective *-homomorphism $\phi : B \to \mathcal{NO}_X^r$ s.t. $\phi \circ \psi = j_X^r$.
- Uniqueness. If (C, ρ, γ) satisfies the same conditions, there is an isomorphism φ: C → NO^r_X s.t. j^r_X = φ ∘ ρ.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Gauge-invariant uniqueness property (part II)

Let (G, P) be quasi-lattice ordered, X compactly aligned, and assume all $\tilde{\phi}_q$ are injective. We say that \mathcal{NO}_X has the gauge-invariant uniqueness property provided that

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Gauge-invariant uniqueness property (part II)

Let (G, P) be quasi-lattice ordered, X compactly aligned, and assume all $\tilde{\phi}_q$ are injective. We say that \mathcal{NO}_X has the gauge-invariant uniqueness property provided that a surjective *-homomorphism $\phi : \mathcal{NO}_X \to B$ is injective if and only if:

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Gauge-invariant uniqueness property (part II)

Let (G, P) be quasi-lattice ordered, X compactly aligned, and assume all $\tilde{\phi}_q$ are injective. We say that \mathcal{NO}_X has the gauge-invariant uniqueness property provided that a surjective *-homomorphism $\phi : \mathcal{NO}_X \to B$ is injective if and only if:

1 there is a coaction β of G on B such that $\beta \circ \phi = (\phi \otimes id_{C^*(G)}) \circ \nu;$

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Gauge-invariant uniqueness property (part II)

Let (G, P) be quasi-lattice ordered, X compactly aligned, and assume all $\tilde{\phi}_q$ are injective. We say that \mathcal{NO}_X has the gauge-invariant uniqueness property provided that a surjective *-homomorphism $\phi : \mathcal{NO}_X \to B$ is injective if and only if:

1 there is a coaction β of G on B such that $\beta \circ \phi = (\phi \otimes id_{C^*(G)}) \circ \nu;$

2 the homomorphism $\phi|_{j_X(A)}$ is injective.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Gauge-invariant uniqueness property (part II)

Let (G, P) be quasi-lattice ordered, X compactly aligned, and assume all $\tilde{\phi}_q$ are injective. We say that \mathcal{NO}_X has the gauge-invariant uniqueness property provided that a surjective *-homomorphism $\phi : \mathcal{NO}_X \to B$ is injective if and only if:

1 there is a coaction β of G on B such that $\beta \circ \phi = (\phi \otimes id_{C^*(G)}) \circ \nu;$

2 the homomorphism $\phi|_{j_X(A)}$ is injective.

Important feature

 \mathcal{NO}_X will satisfy the gauge-invariant uniqueness property precisely when it is isomorphic to its quotient \mathcal{NO}_X^r .

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Gauge-invariant uniqueness property (part II)

Let (G, P) be quasi-lattice ordered, X compactly aligned, and assume all $\tilde{\phi}_q$ are injective. We say that \mathcal{NO}_X has the gauge-invariant uniqueness property provided that a surjective *-homomorphism $\phi : \mathcal{NO}_X \to B$ is injective if and only if:

1 there is a coaction β of G on B such that $\beta \circ \phi = (\phi \otimes id_{C^*(G)}) \circ \nu;$

2 the homomorphism $\phi|_{j_X(A)}$ is injective.

Important feature

 \mathcal{NO}_X will satisfy the gauge-invariant uniqueness property precisely when it is isomorphic to its quotient \mathcal{NO}_X^r .

So \mathcal{NO}_X^r defined by its co-universal property involving only Nica covariant reps. is more "accessible" an object than \mathcal{NO}_X given by its universal property involving the difficult to check CNP-covariance.

An aside: coactions and Fell bundles

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

If δ is a coaction of a discrete group G on a C^* -algebra A, let $A_g^{\delta} := \{ a \in A \mid \delta(a) = a \otimes i_G(g) \}$ for $g \in G$. The disjoint union of $A_g^{\delta} \times \{g\}$ for $g \in G$ forms a Fell bundle \mathcal{A} over G (Quigg 1996).

An aside: coactions and Fell bundles

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

If δ is a coaction of a discrete group G on a C^* -algebra A, let $A_g^{\delta} := \{ a \in A \mid \delta(a) = a \otimes i_G(g) \}$ for $g \in G$. The disjoint union of $A_g^{\delta} \times \{g\}$ for $g \in G$ forms a Fell bundle \mathcal{A} over G (Quigg 1996). Associated to a Fell bundle \mathcal{A} there are a full cross sectional algebra $C^*(\mathcal{A})$ (Fell-Doran),

Nadia S.

An aside: coactions and Fell bundles

Product systems, rep resentations and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

If δ is a coaction of a discrete group G on a C^* -algebra A, let $A_g^{\delta} := \{ a \in A \mid \delta(a) = a \otimes i_G(g) \}$ for $g \in G$. The disjoint union of $A_g^{\delta} \times \{g\}$ for $g \in G$ forms a Fell bundle A over G (Quigg 1996). Associated to a Fell bundle A there are a full cross sectional algebra $C^*(A)$ (Fell-Doran), and a reduced cross sectional algebra $C_r^*(A)$ – independently studied by Exel (1997) and by Quigg (1996) – and shown to coincide by Echterhoff and Quigg (1999).

Nadia S.

An aside: coactions and Fell bundles

Product systems, rep resentations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

If δ is a coaction of a discrete group G on a C^{*}-algebra A, let $A^{\delta}_{\sigma} := \{ a \in A \mid \delta(a) = a \otimes i_{G}(g) \}$ for $g \in G$. The disjoint union of $A_{\sigma}^{\delta} \times \{g\}$ for $g \in G$ forms a Fell bundle \mathcal{A} over G(Quigg 1996). Associated to a Fell bundle \mathcal{A} there are a full cross sectional algebra $C^*(\mathcal{A})$ (Fell-Doran), and a reduced cross sectional algebra $C_r^*(\mathcal{A})$ – independently studied by Exel (1997) and by Quigg (1996) - and shown to coincide by Echterhoff and Quigg (1999). When \mathcal{A} is the Fell bundle associated to a cosystem (A, G, δ) , we let A^{r} denote the reduced cross sectional algebra;

Nadia S.

An aside: coactions and Fell bundles

Product systems, rep resentations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

If δ is a coaction of a discrete group G on a C^{*}-algebra A, let $A^{\delta}_{\sigma} := \{ a \in A \mid \delta(a) = a \otimes i_{G}(g) \}$ for $g \in G$. The disjoint union of $A_{\sigma}^{\delta} \times \{g\}$ for $g \in G$ forms a Fell bundle \mathcal{A} over G(Quigg 1996). Associated to a Fell bundle \mathcal{A} there are a full cross sectional algebra $C^*(\mathcal{A})$ (Fell-Doran), and a reduced cross sectional algebra $C_r^*(\mathcal{A})$ – independently studied by Exel (1997) and by Quigg (1996) - and shown to coincide by Echterhoff and Quigg (1999). When \mathcal{A} is the Fell bundle associated to a cosystem (A, G, δ) , we let A^{r} denote the reduced cross sectional algebra; there are a surjective homomorphism $\lambda_A: A \to A^r$ (Exel) and a normal coaction δ^n on A^r s.t. $\delta^n(a_g) = a_g \otimes i_G(g)$ for $a_g \in A_{\sigma}^{\delta}$ (Quigg).

Nadia S.

An aside: coactions and Fell bundles

Product systems, rep resentations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

If δ is a coaction of a discrete group G on a C^{*}-algebra A, let $A^{\delta}_{\sigma} := \{ a \in A \mid \delta(a) = a \otimes i_{G}(g) \}$ for $g \in G$. The disjoint union of $A_{\sigma}^{\delta} \times \{g\}$ for $g \in G$ forms a Fell bundle \mathcal{A} over G(Quigg 1996). Associated to a Fell bundle \mathcal{A} there are a full cross sectional algebra $C^*(\mathcal{A})$ (Fell-Doran), and a reduced cross sectional algebra $C_r^*(\mathcal{A})$ – independently studied by Exel (1997) and by Quigg (1996) - and shown to coincide by Echterhoff and Quigg (1999). When \mathcal{A} is the Fell bundle associated to a cosystem (A, G, δ) , we let A^{r} denote the reduced cross sectional algebra; there are a surjective homomorphism $\lambda_A: A \to A^r$ (Exel) and a normal coaction δ^n on A^r s.t. $\delta^n(a_g) = a_g \otimes i_G(g)$ for $a_{g} \in A^{\delta}_{\sigma}$ (Quigg). Normal means (id $\otimes \lambda_{G}$) $\circ \delta^{n}$ is injective.

Nadia S.

An aside: coactions and Fell bundles

Product systems, rep resentations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

If δ is a coaction of a discrete group G on a C^{*}-algebra A, let $A^{\delta}_{\sigma} := \{ a \in A \mid \delta(a) = a \otimes i_{G}(g) \}$ for $g \in G$. The disjoint union of $A_{\sigma}^{\delta} \times \{g\}$ for $g \in G$ forms a Fell bundle \mathcal{A} over G(Quigg 1996). Associated to a Fell bundle \mathcal{A} there are a full cross sectional algebra $C^*(\mathcal{A})$ (Fell-Doran), and a reduced cross sectional algebra $C_r^*(\mathcal{A})$ – independently studied by Exel (1997) and by Quigg (1996) - and shown to coincide by Echterhoff and Quigg (1999). When \mathcal{A} is the Fell bundle associated to a cosystem (A, G, δ) , we let A^{r} denote the reduced cross sectional algebra; there are a surjective homomorphism $\lambda_A: A \to A^r$ (Exel) and a normal coaction δ^n on A^r s.t. $\delta^n(a_g) = a_g \otimes i_G(g)$ for $a_{g} \in A_{\sigma}^{\delta}$ (Quigg). Normal means (id $\otimes \lambda_{G}$) $\circ \delta^{n}$ is injective. In fact, δ^{n} is the normalisation of δ (Echterhoff-Quigg).

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Equivalent conditions

Thus, from (\mathcal{NO}_X, G, ν) we form a Fell bundle \mathcal{N} , we let \mathcal{NO}_X^r be its reduced cross sectional algebra, and we let ν^n be the normal coaction on \mathcal{NO}_X^r obtained as the normalisation of ν .

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Equivalent conditions

Thus, from (\mathcal{NO}_X, G, ν) we form a Fell bundle \mathcal{N} , we let \mathcal{NO}_X^r be its reduced cross sectional algebra, and we let ν^n be the normal coaction on \mathcal{NO}_X^r obtained as the normalisation of ν . From the main theorem we derive the following:

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Equivalent conditions

Thus, from (\mathcal{NO}_X, G, ν) we form a Fell bundle \mathcal{N} , we let \mathcal{NO}_X^r be its reduced cross sectional algebra, and we let ν^n be the normal coaction on \mathcal{NO}_X^r obtained as the normalisation of ν . From the main theorem we derive the following:

Corollary

Given (G, P) and X, suppose either that the left action ϕ_p on each X_p is injective, or that P is directed and all $\tilde{\phi}_q$ are injective. TFAE:

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Equivalent conditions

Thus, from (\mathcal{NO}_X, G, ν) we form a Fell bundle \mathcal{N} , we let \mathcal{NO}_X^r be its reduced cross sectional algebra, and we let ν^n be the normal coaction on \mathcal{NO}_X^r obtained as the normalisation of ν . From the main theorem we derive the following:

Corollary

Given (G, P) and X, suppose either that the left action ϕ_p on each X_p is injective, or that P is directed and all $\tilde{\phi}_q$ are injective. TFAE:

1 \mathcal{NO}_X has the gauge-invariant uniqueness property;

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Equivalent conditions

Thus, from (\mathcal{NO}_X, G, ν) we form a Fell bundle \mathcal{N} , we let \mathcal{NO}_X^r be its reduced cross sectional algebra, and we let ν^n be the normal coaction on \mathcal{NO}_X^r obtained as the normalisation of ν . From the main theorem we derive the following:

Corollary

Given (G, P) and X, suppose either that the left action ϕ_p on each X_p is injective, or that P is directed and all $\tilde{\phi}_q$ are injective. TFAE:

1 \mathcal{NO}_X has the gauge-invariant uniqueness property;

2 the coaction ν on \mathcal{NO}_X is normal;

Nadia S.

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Equivalent conditions

Thus, from (\mathcal{NO}_X, G, ν) we form a Fell bundle \mathcal{N} , we let \mathcal{NO}_X^r be its reduced cross sectional algebra, and we let ν^n be the normal coaction on \mathcal{NO}_X^r obtained as the normalisation of ν . From the main theorem we derive the following:

Corollary

Given (G, P) and X, suppose either that the left action ϕ_p on each X_p is injective, or that P is directed and all $\tilde{\phi}_q$ are injective. TFAE:

- **1** \mathcal{NO}_X has the gauge-invariant uniqueness property;
- **2** the coaction ν on \mathcal{NO}_X is normal;
- 3 the Fell bundle ((NO_X)^ν_g × {g})_{g∈G} is amenable (in Exel's sense);

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Equivalent conditions

Thus, from (\mathcal{NO}_X, G, ν) we form a Fell bundle \mathcal{N} , we let \mathcal{NO}_X^r be its reduced cross sectional algebra, and we let ν^n be the normal coaction on \mathcal{NO}_X^r obtained as the normalisation of ν . From the main theorem we derive the following:

Corollary

Given (G, P) and X, suppose either that the left action ϕ_p on each X_p is injective, or that P is directed and all $\tilde{\phi}_q$ are injective. TFAE:

- **1** \mathcal{NO}_X has the gauge-invariant uniqueness property;
- **2** the coaction ν on \mathcal{NO}_X is normal;
- S the Fell bundle ((NO_X)^ν_g × {g})_{g∈G} is amenable (in Exel's sense);
- $\ \, \textbf{4} \ \, \lambda_{\mathcal{N}}: \mathcal{NO}_X \to \mathcal{NO}_X^r \ \, \text{is an isomorphism.}$

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Conditions that imply GIUP

Corollary

 \mathcal{NO}_X has the gauge-invariant uniqueness property in the following cases:

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Conditions that imply GIUP

Corollary

 \mathcal{NO}_X has the gauge-invariant uniqueness property in the following cases:

1 G is exact and the coaction δ on $\mathcal{T}_{cov}(X)$ is normal.

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Conditions that imply $\ensuremath{\mathsf{GIUP}}$

Corollary

 \mathcal{NO}_X has the gauge-invariant uniqueness property in the following cases:

- **1** G is exact and the coaction δ on $\mathcal{T}_{cov}(X)$ is normal.
- Q G is exact and there is a quasi-lattice ordered group (G, P) with G amenable and a homomorphism π: G → G such that whenever g, h ∈ G satisfy g ∨ h < ∞, we have</p>

$$\pi(g) \lor \pi(h) = \pi(g \lor h) \text{ and } \pi(g) = \pi(h) \implies g = h.$$

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Conditions that imply GIUP

Corollary

 \mathcal{NO}_X has the gauge-invariant uniqueness property in the following cases:

- **1** G is exact and the coaction δ on $\mathcal{T}_{cov}(X)$ is normal.
- Q G is exact and there is a quasi-lattice ordered group (G, P) with G amenable and a homomorphism π: G → G such that whenever g, h ∈ G satisfy g ∨ h < ∞, we have</p>

$$\pi(g) \lor \pi(h) = \pi(g \lor h) \text{ and } \pi(g) = \pi(h) \implies g = h.$$

G is amenable.

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Conditions that imply GIUP

Corollary

 \mathcal{NO}_X has the gauge-invariant uniqueness property in the following cases:

- **1** G is exact and the coaction δ on $\mathcal{T}_{cov}(X)$ is normal.
- Q G is exact and there is a quasi-lattice ordered group (G, P) with G amenable and a homomorphism π: G → G such that whenever g, h ∈ G satisfy g ∨ h < ∞, we have</p>

$$\pi(g) \lor \pi(h) = \pi(g \lor h) \text{ and } \pi(g) = \pi(h) \implies g = h.$$

3 *G* is amenable.

④ The Fell bundle $\mathcal{B} = (\mathcal{T}_{cov}(X)_g^{\delta} \times \{g\})_{g \in G}$ has the approximation property.

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Conditions that imply GIUP

Corollary

 \mathcal{NO}_X has the gauge-invariant uniqueness property in the following cases:

- **1** G is exact and the coaction δ on $\mathcal{T}_{cov}(X)$ is normal.
- Q G is exact and there is a quasi-lattice ordered group (G, P) with G amenable and a homomorphism π: G → G such that whenever g, h ∈ G satisfy g ∨ h < ∞, we have</p>

$$\pi(g) \lor \pi(h) = \pi(g \lor h) \text{ and } \pi(g) = \pi(h) \implies g = h.$$

- **3** *G* is amenable.
- General The Fell bundle B = (T_{cov}(X)^δ_g × {g})_{g∈G} has the approximation property.
- **5** The Fell bundle N = ((NO_X)^ν_g × {g})_{g∈G} has the approximation property.

Boundary quotient algebras

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Let (G, P) be quasi-lattice ordered with Nica spectrum Ω (all hereditary directed sets $\omega \subset G$ with $e \in \omega$). There is a partial action α of G on the boundary $\delta \Omega$ of Ω (Nica, Laca, Crisp-Laca, Exel-Laca-Quigg).

Boundary quotient algebras

Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Let (G, P) be quasi-lattice ordered with Nica spectrum Ω (all hereditary directed sets $\omega \subset G$ with $e \in \omega$). There is a partial action α of G on the boundary $\delta\Omega$ of Ω (Nica, Laca, Crisp-Laca, Exel-Laca-Quigg). Let $X_p = \mathbb{C}$ for all $p \in P$ with 1_p denoting 1; this is compactly aligned, left actions are injective, and $\tilde{\phi}_a$ are injective (Sims-Yeend).

Nadia S.

Boundary quotient algebras

Product systems, rep resentations.

The gaugeinvariant uniqueness property (1)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Let (G, P) be quasi-lattice ordered with Nica spectrum Ω (all hereditary directed sets $\omega \subset G$ with $e \in \omega$). There is a partial action α of G on the boundary $\delta\Omega$ of Ω (Nica, Laca, Crisp-Laca, Exel-Laca-Quigg). Let $X_p = \mathbb{C}$ for all $p \in P$ with 1_p denoting 1; this is compactly aligned, left actions are injective, and $\tilde{\phi}_q$ are injective (Sims-Yeend). $C_0(\partial\Omega) \rtimes^r_{\alpha} G$ is generated by an injective Nica covariant rep. ψ (send ψ to $\{\psi(1_p) \mid p \in P\}$).

Nadia S.

Boundary quotient algebras

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Let (G, P) be quasi-lattice ordered with Nica spectrum Ω (all hereditary directed sets $\omega \subset G$ with $e \in \omega$). There is a partial action α of G on the boundary $\delta\Omega$ of Ω (Nica, Laca, Crisp-Laca, Exel-Laca-Quigg). Let $X_p = \mathbb{C}$ for all $p \in P$ with 1_p denoting 1; this is compactly aligned, left actions are injective, and $\tilde{\phi}_q$ are injective (Sims-Yeend). $C_0(\partial\Omega) \rtimes_{\alpha}^r G$ is generated by an injective Nica covariant rep. ψ (send ψ to $\{\psi(1_p) \mid p \in P\}$). Further, ψ is gauge-compatible; just use the canonical coaction β on $C_0(\partial\Omega) \rtimes_{\alpha}^r G$.

Nadia S.

Boundary quotient algebras

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Let (G, P) be quasi-lattice ordered with Nica spectrum Ω (all hereditary directed sets $\omega \subset G$ with $e \in \omega$). There is a partial action α of G on the boundary $\delta\Omega$ of Ω (Nica, Laca, Crisp-Laca, Exel-Laca-Quigg). Let $X_p = \mathbb{C}$ for all $p \in P$ with 1_p denoting 1; this is compactly aligned, left actions are injective, and $\tilde{\phi}_a$ are injective (Sims-Yeend). $C_0(\partial\Omega) \rtimes_{\alpha}^r G$ is generated by an injective Nica covariant rep. ψ (send ψ to $\{\psi(1_p) \mid p \in P\}$). Further, ψ is gauge-compatible; just use the canonical coaction β on $C_0(\partial \Omega) \rtimes^r_{\alpha} G$. The main theorem gives a surj. homom. $\phi: C_0(\partial \Omega) \rtimes_{\alpha}^r G \to \mathcal{NO}_X^r$ which intertwines ν^n and β .

Nadia S.

Boundary quotient algebras

Product systems, representations,

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Let (G, P) be quasi-lattice ordered with Nica spectrum Ω (all hereditary directed sets $\omega \subset G$ with $e \in \omega$). There is a partial action α of G on the boundary $\delta\Omega$ of Ω (Nica, Laca, Crisp-Laca, Exel-Laca-Quigg). Let $X_p = \mathbb{C}$ for all $p \in P$ with 1_p denoting 1; this is compactly aligned, left actions are injective, and $\tilde{\phi}_a$ are injective (Sims-Yeend). $C_0(\partial\Omega) \rtimes_{\alpha}^r G$ is generated by an injective Nica covariant rep. ψ (send ψ to $\{\psi(1_p) \mid p \in P\}$). Further, ψ is gauge-compatible; just use the canonical coaction β on $C_0(\partial \Omega) \rtimes^r_{\alpha} G$. The main theorem gives a surj. homom. $\phi: C_0(\partial \Omega) \rtimes_{\alpha}^r G \to \mathcal{NO}_X^r$ which intertwines ν^{n} and β . We can show that ϕ is injective. This implies that the associated Fell bundles are isomorphic. Therefore

Nadia S.

Boundary quotient algebras

Product systems, representations,

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Let (G, P) be quasi-lattice ordered with Nica spectrum Ω (all hereditary directed sets $\omega \subset G$ with $e \in \omega$). There is a partial action α of G on the boundary $\delta\Omega$ of Ω (Nica, Laca, Crisp-Laca, Exel-Laca-Quigg). Let $X_p = \mathbb{C}$ for all $p \in P$ with 1_p denoting 1; this is compactly aligned, left actions are injective, and $\tilde{\phi}_a$ are injective (Sims-Yeend). $C_0(\partial\Omega) \rtimes_{\alpha}^r G$ is generated by an injective Nica covariant rep. ψ (send ψ to $\{\psi(1_p) \mid p \in P\}$). Further, ψ is gauge-compatible; just use the canonical coaction β on $C_0(\partial \Omega) \rtimes^r_{\alpha} G$. The main theorem gives a surj. homom. $\phi: C_0(\partial \Omega) \rtimes_{\alpha}^r G \to \mathcal{NO}_X^r$ which intertwines ν^{n} and β . We can show that ϕ is injective. This implies that the associated Fell bundles are isomorphic. Therefore $C_0(\partial \Omega) \rtimes_{\alpha} G \cong \mathcal{NO}_X$.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Crossed products

Important feature

 \mathcal{NO}_X behaves like a full crossed product and \mathcal{NO}_X^r like a reduced one.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Crossed products

Important feature

 \mathcal{NO}_X behaves like a full crossed product and \mathcal{NO}_X^r like a reduced one.

Let (G, P) be quasi-lattice ordered, $\alpha : G \to Aut(A)$ be an action of G on a C*-algebra A.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Crossed products

Important feature

 \mathcal{NO}_X behaves like a full crossed product and \mathcal{NO}_X^r like a reduced one.

Let (G, P) be quasi-lattice ordered, $\alpha: G \to \operatorname{Aut}(A)$ be an action of G on a C^* -algebra A. Fowler constructed a compactly aligned product system $X = X_{\alpha}$ over the opposite semigroup P^{op} with fibers $X_p := \alpha_p A$, $p \in P$.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Crossed products

Important feature

 \mathcal{NO}_X behaves like a full crossed product and \mathcal{NO}_X^r like a reduced one.

Let (G, P) be quasi-lattice ordered, $\alpha \colon G \to \operatorname{Aut}(A)$ be an action of G on a C^* -algebra A. Fowler constructed a compactly aligned product system $X = X_{\alpha}$ over the opposite semigroup P^{op} with fibers $X_p := {}_{\alpha_p}A$, $p \in P$. We assume that P is directed and that it generates G as a group.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Crossed products

Important feature

 \mathcal{NO}_X behaves like a full crossed product and \mathcal{NO}_X^r like a reduced one.

Let (G, P) be quasi-lattice ordered, $\alpha: G \to \operatorname{Aut}(A)$ be an action of G on a C^* -algebra A. Fowler constructed a compactly aligned product system $X = X_{\alpha}$ over the opposite semigroup P^{op} with fibers $X_p := {}_{\alpha_p}A, p \in P$. We assume that P is directed and that it generates G as a group. By the main theorem, there is an isomorphism $\phi: A \times_{\alpha}^r G \to \mathcal{NO}_X^r$ s.t. $\nu^n \circ \phi = (\phi \otimes \operatorname{id}_{C^*(G)}) \circ \widehat{\alpha}^n$, with $\widehat{\alpha}^n$ canonical (normal) coaction on the reduced crossed product.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Crossed products

Important feature

 \mathcal{NO}_X behaves like a full crossed product and \mathcal{NO}_X^r like a reduced one.

Let (G, P) be quasi-lattice ordered, $\alpha: G \to \operatorname{Aut}(A)$ be an action of G on a C^* -algebra A. Fowler constructed a compactly aligned product system $X = X_{\alpha}$ over the opposite semigroup P^{op} with fibers $X_p := {}_{\alpha_p}A, p \in P$. We assume that P is directed and that it generates G as a group. By the main theorem, there is an isomorphism $\phi: A \times_{\alpha}^r G \to \mathcal{NO}_X^r$ s.t. $\nu^n \circ \phi = (\phi \otimes \operatorname{id}_{C^*(G)}) \circ \widehat{\alpha}^n$, with $\widehat{\alpha}^n$ canonical (normal) coaction on the reduced crossed product. Use that $\widehat{\alpha}^n$ is normal to show that ϕ is injective.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Crossed products

Important feature

 \mathcal{NO}_X behaves like a full crossed product and \mathcal{NO}_X^r like a reduced one.

Let (G, P) be quasi-lattice ordered, $\alpha: G \to \operatorname{Aut}(A)$ be an action of G on a C^* -algebra A. Fowler constructed a compactly aligned product system $X = X_{\alpha}$ over the opposite semigroup P^{op} with fibers $X_p := {}_{\alpha_p}A, p \in P$. We assume that P is directed and that it generates G as a group. By the main theorem, there is an isomorphism $\phi: A \times_{\alpha}^r G \to \mathcal{NO}_X^r$ s.t. $\nu^n \circ \phi = (\phi \otimes \operatorname{id}_{C^*(G)}) \circ \widehat{\alpha}^n$, with $\widehat{\alpha}^n$ canonical (normal) coaction on the reduced crossed product. Use that $\widehat{\alpha}^n$ is normal to show that ϕ is injective.

Corollary

 $A \times_{\alpha} G \cong \mathcal{NO}_X.$

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Yeend's topological higher-rank graphs (THRG)

For $k \in \mathbb{N}$, a topological k-graph is a pair (Λ, d) consisting of: (1) a small category Λ endowed with a second countable locally compact Hausdorff topology s.t. the composition map is continuous and open, the range map r is continuous and the source map s is a local homeomorphism;

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

Yeend's topological higher-rank graphs (THRG)

For $k \in \mathbb{N}$, a topological k-graph is a pair (Λ, d) consisting of: (1) a small category Λ endowed with a second countable locally compact Hausdorff topology s.t. the composition map is continuous and open, the range map r is continuous and the source map s is a local homeomorphism; and (2) a continuous functor $d: \Lambda \to \mathbb{N}^k$, called the *degree map*, satisfying the factorisation property: if $d(\lambda) = m + n$ then there exist unique μ, ν with $d(\mu) = m$, $d(\nu) = n$ and $\lambda = \mu\nu$.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

For $k \in \mathbb{N}$, a topological k-graph is a pair (Λ, d) consisting of: (1) a small category Λ endowed with a second countable locally compact Hausdorff topology s.t. the composition map is continuous and open, the range map r is continuous and the source map s is a local homeomorphism; and (2) a continuous functor $d: \Lambda \to \mathbb{N}^k$, called the *degree map*, satisfying the factorisation property: if $d(\lambda) = m + n$ then there exist unique μ, ν with $d(\mu) = m$, $d(\nu) = n$ and $\lambda = \mu\nu$.

To a compactly aligned topological higher-rank graph Yeend associated two groupoids G_{Λ} and \mathcal{G}_{Λ} , hence two C^* -algebras

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

For $k \in \mathbb{N}$, a topological k-graph is a pair (Λ, d) consisting of: (1) a small category Λ endowed with a second countable locally compact Hausdorff topology s.t. the composition map is continuous and open, the range map r is continuous and the source map s is a local homeomorphism; and (2) a continuous functor $d: \Lambda \to \mathbb{N}^k$, called the *degree map*, satisfying the factorisation property: if $d(\lambda) = m + n$ then there exist unique μ, ν with $d(\mu) = m$, $d(\nu) = n$ and $\lambda = \mu\nu$.

To a compactly aligned topological higher-rank graph Yeend associated two groupoids G_{Λ} and \mathcal{G}_{Λ} , hence two C^* -algebras

• $C^*(G_{\Lambda})$ (model for a Toeplitz algebra)

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

For $k \in \mathbb{N}$, a topological k-graph is a pair (Λ, d) consisting of: (1) a small category Λ endowed with a second countable locally compact Hausdorff topology s.t. the composition map is continuous and open, the range map r is continuous and the source map s is a local homeomorphism; and (2) a continuous functor $d: \Lambda \to \mathbb{N}^k$, called the *degree map*, satisfying the factorisation property: if $d(\lambda) = m + n$ then there exist unique μ, ν with $d(\mu) = m$, $d(\nu) = n$ and $\lambda = \mu\nu$.

To a compactly aligned topological higher-rank graph Yeend associated two groupoids G_{Λ} and \mathcal{G}_{Λ} , hence two C^* -algebras

- C^{*}(G_Λ) (model for a Toeplitz algebra)
- $C^*(\mathcal{G}_{\Lambda})$ (model for a Cuntz-Krieger algebra).

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

For $k \in \mathbb{N}$, a topological k-graph is a pair (Λ, d) consisting of: (1) a small category Λ endowed with a second countable locally compact Hausdorff topology s.t. the composition map is continuous and open, the range map r is continuous and the source map s is a local homeomorphism; and (2) a continuous functor $d: \Lambda \to \mathbb{N}^k$, called the *degree map*, satisfying the factorisation property: if $d(\lambda) = m + n$ then there exist unique μ, ν with $d(\mu) = m$, $d(\nu) = n$ and $\lambda = \mu\nu$.

To a compactly aligned topological higher-rank graph Yeend associated two groupoids G_{Λ} and \mathcal{G}_{Λ} , hence two C^* -algebras

- $C^*(G_{\Lambda})$ (model for a Toeplitz algebra)
- $C^*(\mathcal{G}_{\Lambda})$ (model for a Cuntz-Krieger algebra).

No gauge-invariant uniqueness thm. is established for $C^*(\mathcal{G}_{\Lambda})$.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

NO_X : the Cuntz-Krieger algebra of Λ

Given a compactly aligned topological higher rank graph Λ , we construct a compactly aligned (involves non-trivial arguments!) product system X over \mathbb{N}^k with fibers X_n as completions of $C_c(\Lambda^n)$.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

NO_X : the Cuntz-Krieger algebra of Λ

Given a compactly aligned topological higher rank graph Λ , we construct a compactly aligned (involves non-trivial arguments!) product system X over \mathbb{N}^k with fibers X_n as completions of $C_c(\Lambda^n)$.

The gauge-invariant uniqueness property holds, and therefore \mathcal{NO}_X is co-universal amongst all C^* -algebras generated by Nica covariant reps. of X which carry a gauge-action of \mathbb{T}^k .

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

NO_X : the Cuntz-Krieger algebra of Λ

Given a compactly aligned topological higher rank graph Λ , we construct a compactly aligned (involves non-trivial arguments!) product system X over \mathbb{N}^k with fibers X_n as completions of $C_c(\Lambda^n)$.

The gauge-invariant uniqueness property holds, and therefore \mathcal{NO}_X is co-universal amongst all C^* -algebras generated by Nica covariant reps. of X which carry a gauge-action of \mathbb{T}^k . We construct $\psi: X \to C^*(G_\Lambda)$ Nica covariant and generating the image algebra.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

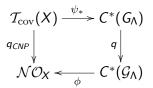
Applications

NO_X : the Cuntz-Krieger algebra of Λ

Given a compactly aligned topological higher rank graph Λ , we construct a compactly aligned (involves non-trivial arguments!) product system X over \mathbb{N}^k with fibers X_n as completions of $C_c(\Lambda^n)$.

The gauge-invariant uniqueness property holds, and therefore \mathcal{NO}_X is co-universal amongst all C^* -algebras generated by Nica covariant reps. of X which carry a gauge-action of \mathbb{T}^k . We construct $\psi : X \to C^*(G_\Lambda)$ Nica covariant and generating the image algebra.

The co-universal property implies that \mathcal{NO}_X is the unique quotient of Yeend's Toeplitz alg. satisfying a gauge-invariant uniqueness property:



> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Key results

Lemma

Let (G, P) be quasi-lattice ordered group and X a compactly aligned product system over P of right-Hilbert A–A bimodules. Suppose either that the left action on each fibre is by injective homomorphisms, or that P is directed. Let $\psi: X \to B$ be an injective Nica covariant rep. of X. Fix a finite subset $F \subset P$ and fix operators $T_p \in \mathcal{K}(X_p)$ for each $p \in F$ satisfying $\sum_{p \in F} \psi^{(p)}(T_p) = 0$. Then $\sum_{p \in F} \tilde{\iota}_p^s(T_p) = 0$ for large s.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II)

Applications

Key results

Lemma

Let (G, P) be quasi-lattice ordered group and X a compactly aligned product system over P of right-Hilbert A–A bimodules. Suppose either that the left action on each fibre is by injective homomorphisms, or that P is directed. Let $\psi: X \to B$ be an injective Nica covariant rep. of X. Fix a finite subset $F \subset P$ and fix operators $T_p \in \mathcal{K}(X_p)$ for each $p \in F$ satisfying $\sum_{p \in F} \psi^{(p)}(T_p) = 0$. Then $\sum_{p \in F} \tilde{\iota}_p^s(T_p) = 0$ for large s.

Proposition

With the hypotheses of the lemma, let $\psi_* : T_{cov}(X) \to B$ be the homomorphism characterised by $\psi = \psi_* \circ i_X$. Then $ker(\psi_*) \cap \mathcal{F} \subset ker(q_{CNP})$.

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

More key results

To prove the proposition, write

$$\mathcal{F} = \overline{\bigcup_{F \in \mathcal{P}_{\mathrm{fin}}^{\vee}(P)} B_F},$$

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universa algebra

The gaugeinvariant uniqueness property (II)

Applications

More key results

To prove the proposition, write

$$\mathcal{F} = \overline{\bigcup_{F \in \mathcal{P}_{\mathrm{fin}}^{\vee}(P)} B_F},$$

with
$$B_F = \left\{ \sum_{p \in F} i_X^{(p)}(T_p) \mid T_p \in \mathcal{K}(X_p) \text{ for each } p \in F
ight\}.$$

> Nadia S. Larsen

Product systems, representations, and algebras

The gaugeinvariant uniqueness property (I)

The co-universal algebra

The gaugeinvariant uniqueness property (II

Applications

More key results

To prove the proposition, write

$$\mathcal{F} = \overline{\bigcup_{F \in \mathcal{P}_{\mathrm{fin}}^{\vee}(P)} B_F},$$

with
$$B_F = \left\{ \sum_{p \in F} i_X^{(p)}(T_p) \mid T_p \in \mathcal{K}(X_p) \text{ for each } p \in F \right\}$$
.
Show that B_F is a C^* -algebra for each finite \lor -closed subset of P .