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The Truncated Complex Moment Problem

Given γ : γ00, γ01, γ10, . . . , γ0,2n, . . . , γ2n,0, with γ00 > 0 and γji = γ̄ij ,

the TCMP entails finding a positive Borel measure µ supported in

the complex plane C such that

γij =

∫
z̄ iz jdµ (0 ≤ i + j ≤ 2n);

µ is called a rep. meas. for γ.

In earlier joint work with L. Fialkow,

We have introduced an approach based on matrix positivity and

extension, combined with a new “functional calculus” for the columns

of the associated moment matrix.
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We have shown that when the TCMP is of flat data type, a solution

always exists; this is compatible with our previous results for

supp µ ⊆ R (Hamburger TMP)

supp µ ⊆ [0,∞) (Stieltjes TMP)

supp µ ⊆ [a, b] (Hausdorff TMP)

supp µ ⊆ T (Toeplitz TMP)

Along the way we have developed new machinery for analyzing

TMP’s in one or several real or complex variables. For simplicity,

in this talk we focus on one complex variable or two real

variables, although several results have multivariable versions.
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Our techniques also give concrete algorithms to provide finitely-atomic

rep. meas. whose atoms and densities can be explicitly computed.

We have fully resolved, among others, the cases

Z̄ = α1 + βZ

and

Z k = pk−1(Z , Z̄ ) (1 ≤ k ≤ [
n

2
] + 1; deg pk−1 ≤ k − 1).

We obtain applications to quadrature problems in numerical analysis.

We have obtained a duality proof of a generalized form of the

Tchakaloff-Putinar Theorem on the existence of quadrature rules for

positive Borel measures on Rd .
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Positivity of Block Matrices

Theorem

(Smul’jan, 1959)

(
A B

B∗ C

)
≥ 0 ⇔


A ≥ 0

B = AW

C ≥ W ∗AW

.

Moreover, rank

(
A B

B∗ C

)
=rank A ⇔ C = W ∗AW .
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Corollary

Assume rank

(
A B

B∗ C

)
= rank A. Then

A ≥ 0 ⇔

(
A B

B∗ C

)
≥ 0.
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Basic Positivity Condition

Pn : polynomials p in z and z , deg p ≤ n

Given p ∈ Pn, p(z , z) ≡
∑

0≤i+j≤n aij z̄
iz j ,

0 ≤
∫
| p(z , z) |2 dµ(z , z)

=
∑
ijk`

aij āk`

∫
z̄ i+`z j+kdµ(z , z)

=
∑
ijk`

aij āk`γi+`,j+k .

To understand this “matricial” positivity, we introduce the following

lexicographic order on the rows and columns of M(n):

1,Z , Z̄ ,Z 2, Z̄Z , Z̄ 2, . . .

Raúl E. Curto (GPOTS, Boulder, June 3, 2009) Cubic Relations 7 / 40



Define M[i , j ] as in

M[3, 2] :=


γ32 γ41 γ50

γ23 γ32 γ41

γ14 γ23 γ32

γ05 γ14 γ23


Then

(“matricial” positivity)
∑
ijk`

aij āk`γi+`,j+k ≥ 0

⇔ M(n) ≡ M(n)(γ) :=


M[0, 0] M[0, 1] ... M[0, n]

M[1, 0] M[1, 1] ... M[1, n]

... ... ... . . .

M[n, 0] M[n, 1] . . . M[n, n]

 ≥ 0.
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For example,

M(1) =


γ00 γ01 γ10

γ10 γ11 γ20

γ01 γ02 γ11

 ,

M(2) =



γ00 γ01 γ10 γ02 γ11 γ20

γ10 γ11 γ20 γ12 γ21 γ30

γ01 γ02 γ11 γ03 γ12 γ21

γ20 γ21 γ12 γ22 γ31 γ40

γ11 γ12 γ21 γ13 γ22 γ31

γ02 γ03 γ12 γ04 γ13 γ22


.
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In general,

M(n + 1) =

(
M(n) B

B∗ C

)
Similarly, one can build M(∞).

In the real case, M(n)ij := γi+j , i , j ∈ Z2
+.

Positivity Condition is not sufficient:

By modifying an example of K. Schmüdgen, we have built a family

γ00, γ01,γ10, ..., γ06, ..., γ60 with positive invertible moment matrix M(3)

but no rep. meas. But this can also be done for n = 2.
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Functional Calculus

For p ∈ Pn, p(z , z̄) ≡
∑

0≤i+j≤n aij z̄
iz j define

p(Z , Z̄ ) :=
∑

aij Z̄
iZ j .

If there exists a rep. meas. µ, then

p(Z , Z̄ ) = 0 ⇔ supp µ ⊆ Z(p).

The following is our analogue of recursiveness for the TCMP

(RG) If p, q, pq ∈ Pn, and p(Z , Z̄ ) = 0,

then (pq)(Z , Z̄ ) = 0.
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Singular TMP; Real Case

Given a finite family of moments, build moment matrix

Identify all column relations

Build algebraic variety V

Consider the ideal I ⊆ P ≡ R [x , y ] generated by poly’s arising from

column relations

The ideal I is always radical, i.e.,

I =
√
I :=

{
f ∈ P : f k ∈ I for some k ≥ 1

}
If V is finite, then I is zero-dimensional, i.e., V (I) is finite, where

V (I) :=
{
x ∈ C2 : f (x) = 0 for all f ∈ I

}
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Singular TMP

Always true:

r := rankM(n) ≤ card supp µ ≤ v := cardV(β),

so if the variety is finite there’s a natural candidate for supp µ

Finite rank case

Flat case

Extremal case

Recursively generated relations

Build positive extension, repeat, and eventually flatten

General case.
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First Existence Criterion

Theorem

(RC-L. Fialkow, 1998) Let γ be a truncated moment sequence. TFAE:

(i) γ has a rep. meas.;

(ii) γ has a rep. meas. with moments of all orders;

(iii) γ has a compactly supported rep. meas.;

(iv) γ has a finitely atomic rep. meas. (with at most (n + 2)(2n + 3)

atoms);

(v) M(n) ≥ 0 and for some k ≥ 0 M(n) admits a positive extension

M(n + k), which in turn admits a flat (i.e., rank-preserving) extension

M(n + k + 1) (here k ≤ 2n2 + 6n + 6) ).
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Case of Flat Data

Recall: If µ is a rep. meas. for M(n), then rank M(n) ≤ card supp µ.

γ is flat if M(n) =

(
M(n − 1) M(n − 1)W

W ∗M(n − 1) W ∗M(n − 1)W

)
.

Theorem

(RC-L. Fialkow, 1996) If γ is flat and M(n) ≥ 0, then M(n) admits a

unique flat extension of the form M(n + 1).

Theorem

(RC-L. Fialkow, 1996) The truncated moment sequence γ has a

rank M(n)-atomic rep. meas. if and only if M(n) ≥ 0 and M(n) admits a

flat extension M(n + 1).

To find µ concretely, let r :=rank M(n) and look for the relation
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Z r = c01 + c1Z + ... + cr−1Z
r−1.

We then define

p(z) := z r − (c0 + ... + cr−1z
r−1)

and solve the Vandermonde equation
1 · · · 1

z0 · · · zr−1

· · · · · · · · ·
z r−1
0 · · · z r−1

r−1




ρ0

ρ1

· · ·
ρr−1

 =


γ00

γ01

· · ·
γ0r−1

 .

Then

µ =
r−1∑
j=0

ρjδzj .
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The Quartic Moment Problem

Recall the lexicographic order on the rows and columns of M(2):

1,Z , Z̄ ,Z 2, Z̄Z , Z̄ 2

Z = A 1 (Dirac measure)

Z̄ = A 1 + B Z (supp µ ⊆ line)

Z 2 = A 1 + B Z + C Z̄ (flat extensions always exist)

Z̄Z = A 1 + B Z + C Z̄ + D Z 2

D = 0 ⇒ Z̄Z = A 1 + B Z + B̄ Z̄ and C = B̄

⇒ (Z̄ − B)(Z − B̄) = A + |B|2

⇒ W̄W = 1 (circle), for W :=
Z − B̄√
A + |B|2

.
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The functional calculus we have constructed is such that p(Z , Z̄ ) = 0

implies supp µ ⊆ Z(p).

When
{
1,Z , Z̄ ,Z 2, Z̄Z

}
is a basis for CM(2), the associated algebraic

variety is the zero set of a real quadratic equation in

x := Re[z ] and y := Im[z ].

Using the flat data result, one can reduce the study to cases corresponding

to the following four real conics:

(a) W̄ 2 = −2iW + 2iW̄ −W 2 − 2W̄W parabola; y = x2

(b) W̄ 2 = −4i1 + W 2 hyperbola; yx = 1

(c) W̄ 2 = W 2 pair of intersect. lines; yx = 0

(d) W̄W = 1 unit circle; x2 + y2 = 1.
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Theorem QUARTIC

(RC-L. Fialkow, 2005) Let γ(4) be given, and assume M(2) ≥ 0 and{
1 ,Z , Z̄ ,Z 2, Z̄Z

}
is a basis for CM(2). Then γ(4) admits a rep. meas. µ.

Moreover, it is possible to find µ with card supp µ = rank M (2), except

in some cases when V(γ(4)) is a pair of intersecting lines, in which cases

there exist µ with card supp µ ≤ 6.

Corollary

Assume that M(2) ≥ 0 and that rank M(2) ≤ card V(γ(4)). Then M(2)

admits a representing measure.
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Extremal MP; r = v

The algebraic variety of β is

V ≡ Vβ :=
⋂

p∈Pn,p̂∈kerM(n)

Zp,

where Zp = {x ∈ Rd : p(x) = 0}.
If β admits a representing measure µ, then

p ∈ Pn satisfies p̂ ∈ kerM(n) ⇔ supp µ ⊆ Zp

Thus supp µ ⊆ V, so r := rank M(n) and v := card V satisfy

r ≤ card supp µ ≤ v .

If p ∈ P2n and p|V ≡ 0, then Λ(p) =
∫

p dµ = 0.

Here Λ is the Riesz functional, given by Λ(z̄ iz j) := γij
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Basic necessary conditions for the existence

of a representing measure

(Positivity) M(n) ≥ 0 (8.1)

(Consistency) p ∈ P2n, p|V ≡ 0 =⇒ Λ(p) = 0 (8.2)

(Variety Condition) r ≤ v , i.e., rank M(n) ≤ card V. (8.3)

Consistency implies

(Recursiveness) p, q, pq ∈ Pn, p̂ ∈ kerM(n) =⇒ p̂q ∈ kerM(n). (8.4)
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Previous results:

For d = 1 (the T Hamburger MP for R), positivity and recursiveness

are sufficient

For d = 2, there exists M(3) > 0 for which β has no representing

measure

In general, Positivity, Consistency and the Variety Condition are not

sufficient.

Question C

Suppose M(n)(β) is singular. If M(n) is positive, β is consistent, and

r ≤ v, does β admit a representing measure?
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The next result gives an affirmative answer to Question C in the extremal

case, i.e., r = v .

Theorem EXT

(RC, L. Fialkow and M. Möller, 2005) For β ≡ β(2n) extremal, i.e., r = v,

the following are equivalent:

(i) β has a representing measure;

(ii) β has a unique representing measure, which is rank M(n)-atomic

(minimal);

(iii) M(n) ≥ 0 and β is consistent.

Raúl E. Curto (GPOTS, Boulder, June 3, 2009) Cubic Relations 23 / 40



Cubic Column Relations

Since we know how to solve the singular Quartic MP, WLOG we will

assume M(2) > 0.

Recall

Theorem A

(RC-L. Fialkow) If M(n) admits a column relation of the form

Z k = pk−1(Z , Z̄ ) (1 ≤ k ≤
[

n
2

]
+ 1 and deg pk−1 ≤ k − 1), then M(n)

admits a flat extension M(n + 1), and therefore a representing measure.

Now, if k = 3, Theorem A can be used only if n ≥ 4. Thus, one strategy

is to somehow extend M(3) to M(4) and preserve the column relation

Z 3 = p2(Z , Z̄ ). This requires checking that the C block in the extension

satisfies the Toeplitz condition, something highly nontrivial.
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Here’s a different approach:

We’d like to study the case of harmonic poly’s: q(z , z̄) := f (z)− g(z),

with deg q = 3.

Recall that rank M(n) ≤ card Z(q)

so of special interest is the case when card Z(q) ≥ 7, since otherwise the

TMP admits a flat extension, or has no representing measure. In the case

when g(z) ≡ z , we have

Lemma

(Wilmshurst ’98, Sarason-Crofoot, ’99, Khavinson-Swiatek, ’03)

card Z(f (z)− z) ≤ 7.
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To get 7 points is not easy, as most complex cubic harmonic poly’s

tend to have 5 or fewer zeros. One way to maximize the number of

zeros is to impose symmetry conditions on the zero set K . Also, the

substitution w = z + b/3 (which produces an equivalent TMP)

transforms a cubic z3 + bz2 + cz + d into w3 + c̃w + d̃ ; WLOG, we

always assume that there’s no quadratic term in the analytic piece.

Now, for a poly of the form z3 + αz + βz̄ , it is clear that 0 ∈ K and

that z ∈ K ⇒ −z ∈ K . Another natural condition is to require that

K be symmetric with respect to the line y = x , which in complex

notation is z = i z̄ . When this is required, we obtain α ∈ iR and

β ∈ R. Thus, the column relation becomes Z 3 = itZ + uZ̄ , with

t, u ∈ R.

Under these conditions, one needs to find only two points, one on the

line y = x , the other outside that line.
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We thus consider the harmonic polynomial q7(z , z̄) := z3 − itz − uz̄ .

Proposition

(RC-S. Yoo, ’09) card Z(q7) = 7. In fact, for 0 < |u| < t < 2 |u|,

Z(q7) = {0, p + iq, q + ip,−p − iq,−q − ip, r + ir ,−r − ir},

where p, q, r > 0, p2 + q2 = u and r2 = t−u
2 .
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To prove this result, we first identify the two real poly’s

Re q7 = x3 − 3xy2 + ty − ux and Im q7 = −y3 + 3x2y − tx + uy and

calculate Resultant(Req7, Imq7, y), which is the determinant of the

Sylvester matrix, i.e.,

det



−3x t x3 − ux 0 0

0 −3x t x3 − ux 0

0 0 −3x t x3 − ux

−1 0 3x2 + u −tx 0

0 −1 0 3x2 + u −tx


= x

(
u − t + 2x2

) (
u + t + 2x2

) (
16x4 − 16x2u + t2

)
.
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(0, 0)

(r, r)

(−r,−r)

(p, q)

(q, p)

(−p,−q)

(−q,−p)

Figure 1. The 7-point set Z(q7), where

r =
√

t−u

2
, p = 1

2
(2u +

√
4u2 − t2) and

p2 + q2 = u

1
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The fact that q7 has the maximum number of zeros predicted by the

Lemma is significant to us, in that each sextic TMP with invertible M(2)

and a column relation of the form q7(Z , Z̄ ) = 0 either does not admit a

representing measure or is necessarily extremal.

As a consequence, the existence of a representing measure will be

established once we prove that such a TMP is consistent. This means

that for each poly p of degree at most 6 that vanishes on Z(q7) we must

verify that Λ(p) = 0.
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Since rank M(3) = 7, there must be another column relation besides

q7(Z , Z̄ ) = 0. Clearly the columns

1,Z , Z̄ ,Z 2, Z̄Z , Z̄ 2, Z̄Z 2

must be linearly independent (otherwise M(3) would be a flat extension of

M(2)), so the new column relation must involve Z̄Z 2 and Z̄ 2Z . An

analysis using the properties of the functional calculus shows that, in the

presence of a representing measure, the new column relation must be

Z̄ 2Z + i Z̄Z 2 − iuZ − uZ̄ = 0.
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Notation

In what follows, C6[z , z̄ ] will denote the space of complex polynomials in z

and z̄ of degree at most 6, and let

qLC (z , z̄) := z̄2z + i z̄z2 − iuz − uz̄

= i(z − i z̄)(z̄z − u).

Observe that the zero set of qLC is the union of a line and a circle, and

that Z(q7) ⊂ Z(qLC ).
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(0, 0)

(r, r)

(−r,−r)

(p, q)

(q, p)

(−p,−q)

(−q,−p)

Figure 2. The sets Z(q7) and Z(qLC)

1
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Main Theorem

Let M(3) ≥ 0, with M(2) > 0 and q7(Z , Z̄ ) = 0. There exists a

representing measure for M(3) if and only if{
Λ(qLC ) = 0

Λ(zqLC ) = 0.
(8.5)

Equivalently,{
Re γ12 − Im γ12 = u(Re γ01 − Im γ01) = 0

γ22 = (t + u)γ11 − 2u Im γ02 = 0.

Equivalently,

qLC (Z , Z̄ ) = 0 (8.6)
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Proof. (=⇒) Let µ be a representing measure. We know that

7 ≤ rank M(3) ≤ card supp µ ≤ card Z(q7) = 7, so that

supp µ = Z(q7) and rank M(3) = 7. Thus,

Λ(q7) =

∫
q7 dµ = 0.

Similarly, since supp µ ⊆ Z(qLC ), we also have

Λ(qLC ) = Λ(zqLC ) = 0,

as desired.
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(⇐=) On Z(q7) we have z3 = itz + uz̄ . Using this relation and (8.5), we

can prove that Λ(z̄ iz jqLC ) = 0 for all 0 ≤ i + j ≤ 3. For example,

z̄qLC − izqLC = (z̄ − iz)(z̄2z + i z̄z2 − iuz − uz̄)

= −uz2 + z̄z3 − uz̄2 + z̄3z

= −uz2 + z̄(itz + uz̄)− uz̄2 + (−itz̄ + uz)z

= 0,

and therefore Λ(z̄qLC ) = iΛ(zqLC ) = 0. It follows that for

f , g , h ∈ C3[z , z̄ ] we have Λ(fq7 + gq̄7 + hqLC ) = 0. Consistency will be

established once we show that all degree-six polynomials vanishing in

Z(q7) are of the form fq7 + gq̄7 + hqLC .
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Proposition (Representation of Polynomials)

Let P6 := {p ∈ C6[z , z̄ ] : p|Z(q7) ≡ 0} and let

I := {p ∈ C6[z , z̄ ] : p = fq7 + gq̄7 + hqLC for some f , g , h ∈ C3[z , z̄ ]}.
Then P6 = I.

Proof. Clearly, I ⊆ P6. We shall show that dim I = dim P6. Let

T : C30 −→ C6[z , z̄ ] be given by

(a00, · · · , a30, b00, · · · , b30, c00, · · · , c30) 7−→

(a00 + a01z + a10z̄ + · · ·+ a30z̄
3)q7

+(b00 + b01z + b10z̄ + · · ·+ b30z̄
3)q̄7

+(c00 + c01z + c10z̄ + · · ·+ c30z̄
3)qLC .
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Observe that I = Ran T , so that dim I = rank T . To determine

rank T , we first determine dim ker T . Using Gaussian elimination, we

prove that dim ker T = 9 whenever ut 6= 0. It follows that rank T = 21,

that is, dim I = 21.
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Now consider the evaluation map S : C6[z , z̄ ] −→ C7 given by

S(p(z , z̄)) := (p(w0, w̄0), p(w1, w̄1), p(w2, w̄2),

p(w3, w̄3), p(w4, w̄4), p(w5, w̄5), p(w6, w̄6)).

Using Lagrange Interpolation, it is esay to verify that S is onto.

Moreover, ker S = P6. Since dim C6[z , z̄ ] = 28, it follows that

dim ker S = 21, and a fortiori that dim P6 = 21. We have now

established that dim I = dim P6, that is, I = P6.
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Summary

Given a finite family of moments, build moment matrix

Identify all column relations, and build algebraic variety V

Consider the ideal generated by poly’s arising from column relations

Always true: r ≤ card supp µ ≤ v

Finite rank case; flat case

Quartic Case

Extremal case

Harmonic cubic poly’s in Sextic Case

General singular case

Invertible case still a big mystery...
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