
Extending a normal state from a MASA of a
von Neumann algebra

by Charles Akemann

David Sherman and I are just finishing a closely re-
lated paper titled Conditional Expectations onto Maximal
Abelian Subalgebras from which most of the ideas for this
talk were taken, but I should be blamed for any errors,
NOT David.

Abstract: Ever since the 1959 Kadison-Singer pa-
per, there has been substantial interest in extending pure
states from maximal abelian C*-subalgebras (MASAs) of
C*-algebras. In this talk I will change the problem and
ask the following.

Question: Given a MASA A of a von Neumann alge-
bra N and a normal state f0 of A, what can be said about
the set S of all state extensions of f0 to N?

There are some large gaps in my knowledge about this
question. I will talk about partial results and useful tech-
niques, and I will show how this question relates to vari-
ous other things like conditional expectations. I promise
to leave you with many interesting unsolved problems.
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We know that S is a weak* compact convex subset of
N∗ and here are some sample questions where the answers
are much less clear.

1. When is S a singleton?
2. When is S finite dimensional?
3. When is S norm compact?
4. When does S contain a non-normal element?
5. When does S contain a singular element?
6. What are the weak*-closed faces of S, especially he

extreme points?
7. Let SA denote the set of elements g ∈ S such that

A is contained in the centralizer of g, i.e. for all a ∈ A and
b ∈ N, g(ba) = g(ab). What are the answers to questions
1-6 for SA.

8. For what pairs N,A can we say that a state f of
N is normal iff f0 is normal?

********To my knowledge, NONE of these questions is
more than partially answered. **********
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Singularity of a bounded linear map f : N → M ,
where M and N are any von Neumann algebras, was first
introduced by Takesaki in 1958. A different definition was
given by Akemann-Anderson in 1991, and a third definition
was given by Pop in 1998. Let’s clarify this situation.

DEFINITIONS: A bounded linear functional f on the
von Neumann algebra M is called singular if every non-
zero projection p ∈ M dominates a non-zero projection
q ∈M, such that f(q) = 0. (Takesaki 1959) (The existence
of singular functionals requires the Axiom of Choice.)

The dual space N∗ of N can then be decomposed as
N∗ = N∗⊕N⊥∗ , where N∗ denotes the normal linear func-
tionals of N and N⊥∗ denotes the singular linear functionals
of N .

A bounded linear map T : M → N from the von
Neumann algebra M into the von Neumann algebra N is
called singular if:

1. (Takesaki 1958) T ∗(N∗) ⊂M⊥∗ .
2. (Ak-Anderson 1991). T ∗(N∗) ⊂M⊥∗ .
3. (Pop 1998). Every non-zero projection p ∈ M

dominates a nonzero projection q ∈M, such that T (q) = 0.
PROPOSITION 1.1: Using the definitions above, 3→

2→ 1. Further, 1→ 3 if N has a faithful normal state.
PROPOSITION 1.2: Using definitions 2 or 3, the

composition of singular maps is singular. However, un-
der definition 1, the composition of singular maps may be
the identity map.

QUESTION: Are definitions 2 and 3 equivalent?
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HOW DO WE FIND ELEMENTS OF S AND SA ?
1. The Hahn-Banach Theorem as applied to locally

convex spaces shows that f0 has at least one normal state
extension to N .

2. Krein’s (1937) state extension procedure will pro-
duce at least one state extension.

3. If E : N → A is a projection of norm 1 (also called
a conditional expectation, or CE), then E∗(f0) will lie in
SA. If E is a singular map, then E∗(f0) will be a singular
extension of f0. If E is normal, then E∗(f0) will be a
normal extension of f0.

4. If f ∈ S \ SA, then there must be some projection
p ∈ A and some b ∈ N such that f(pb(1 − p)) 6= 0, i.e.
f 6= pfp+ (1− p)f(1− p), and the RHS is also in S. This
procedure suggests the following definition (that evolved
through von Neumann, Kadison & Singer, and Arveson.

DEFINITION: Define a directed set W as follows. El-
ements of W will be finite subsets of projections in A with
sum 1. Given two such subsets F,G, we say F ≥ G if F is
a refinement of G (i.e. each element of F is dominated by
an unique element of G). For F ∈W, g ∈ N∗, b ∈ N define
gF ∈ N∗ by gF =

∑
p∈F (pgp) and bF =

∑
p∈F (pbp). Note

that this definition implies that g(bF ) = gF (b).
EASY LEMMA: Using the notation just above, There

exists a subnet W ′ such that:
(i). limF∈W ′ bF converges weak* for each b ∈ N to a

limit E(b). E is a conditional expectation of N onto A.
(ii). limF∈W ′ gF converges weak* for each g ∈ N∗ to

a limit Φ(g) that has A in its centralizer and g|A = Φ(g)|A.
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ANOTHER METHOD FOR FINDING CEs

Theorem: If f is a state of N such that f0 = f |A is
faithful and normal and f ∈ SA, then there is a conditional
expectation G : N → A such that G∗(f0) = f . Further, f
is normal on N iff G is normal; and f is singular iff G is
singular.

PROOF OUTLINE: Because f0 is faithful and nor-
mal, it follows readily that A(f0) is weakly dense in A∗,
hence norm dense by convexity of Af0. Define a map
G0 : Af0 → N∗ by G0(af0) = af . We first show that
G0 is isometric and therefore can be extended to an isom-
etry from A∗ into N∗. If a = u|a|(u∗a = |a|) is the polar
decomposition, then

||af0|| ≥ ||(af0)u∗|| = ||a(f0u∗)|| = ||a(u∗f0)||
= ||(u∗a)f0|| = ‖|a|f0|| = |||a|1/2f0|a|1/2||
= f0(|a|1/21|a|1/2) = f0(|a|) = f(|a|) =
f(a|1/21|a|1/2||) = |||a|f || ≥ ||(|a|f)u|| = |||a|(uf)|| =
||(u|a|f) = ||af || ≥ ||af0|| Thus all the inequalities are

equalities, and isometry is proved.
Dualizing we get a norm 1 map G∗0 : N∗∗ → A. Iden-

tifying elements of N , including those in A, with their
canonical images in N∗∗, we define G = G∗0|N . Under this
identification, G∗|A∗ = G0.

Next we show that G is a CE. For all a, c ∈ A
(cf |A)(G(a)) = G∗(cf0))(a) = (G0(cf0)(a) =

(cf)(a) = f(ca) = f0(ca) = (cf0)(a).

Since A(f0) is dense in A∗, G(a) = a for all a ∈ A. The
normality and singularity conclusions are straightforward.
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The last theorem shows that:
COROLLARY 1: There are two distinct CEs from N

onto A iff there exists normal state f0 of A such that SA
is not a singleton.

This relationship sparked my initial interest in the
problem of extending normal states from A to N .

As Kadison & Singer pointed out, those interested in
extending pure states from A to N should also keep an eye
on CEs. They noted that:

COROLLARY 2: If there are two distinct CEs from
N onto A, then some pure state of A must fail to have
unique state extension.

Comparing the two corollaries above, one is an ”if-
then” and the other is an ”iff”. I can’t resist making the
following:

CONJECTURE: The converse to Corollary 2 holds.
Since Kadison & Singer showed that, if N = B(H)

and A is a discrete MASA, then the “projection onto the
diagonal” is the unique CE; proving the above Conjecture
would also solve the Kadison & Singer problem by showing
the uniqueness of pure sate extension in this case. Disprov-
ing the Conjecture would not solve the K&S problem, but
might suggest a new line of attack.

QUESTION: If we use some methods to produce two
elements of S or SA (or two CEs) for some f0, how do we
know when these two elements are distinct?
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Let’s look now at a simple, yet instructive,
EXAMPLE. N is the algebra of 2x2 matrices and A is the
algebra of diagonal matrices. If we choose to view elements
of A and A∗ in matrix form, then

a =
(
a11 0
0 a22

)
, f0 =

(
t11 0
0 t22

)
, f0(a) = trace(af0)

gives a typical state f0 provided that t11, t22 are nonneg-
ative with sum 1. If z is any complex number with |z| ≤√
t11 − t211, then we can define a state extension

fz

(
b11 b12
b21 b22

)
= trace

((
t11 z
z t22

)(
b11 b12
b21 b22

))
.

It is important to note that if t11 = 0 or t11 = 1, then

fz =
(
t11 0
0 t22

)
because z = 0 is the only possible choice.

I.e. if f0 is a pure state of A, then it has unique
state extension, but any other state of A has many possible
extensions, but S is still finite dimensional (2 real or one
complex dimension) and hence compact. It is also clear
that SA is the singleton(

t11 0
0 t22

)
,

which is the center of the disk that comprises S
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CONSIDER FAITHFUL STATES.

In order to escape from the possibility that f0 might
not ”care about” most of A, it simplifies matters to assume
that f0 is faithful on A. After all, if p is the support
projection of f0 in A, and f is a state extension of f0 to
N , then f must vanish on (1 − p), and hence f = pfp.
Since pA is still a MASA in pNp and f0 is now faithful
on pA, assuming that f0 is faithful results in no loss of
generality.

COMMENT: If f0 is faithful on A and f is a normal
extension of f0 to a state of N , f may not be faithful on
N ; indeed it may be singular. This possibility plays a key
role in the type II1 case a few slides down the road.

CONJECTURE: Given N,A, f0, S as above, then S
is a singleton iff A = N .

COMMENT: You are probably thinking, ”That looks
easy!” Yes, it looks that way to me also, but notice how
the EXAMPLE relied on the abelian projections. Let’s go
to infinite dimensions and see how everything works out
nicely, at least for discrete MASAs.
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NOTATION: Let N = B(H) denote a type In factor
(n is a possibly infinite cardinal)) with discrete MASA A,
f0 a faithful, normal state of A, S the set of all state exten-
sions of f0 to N and SA denote the set of elements g ∈ S
such that A is contained in centralizer of g. (Note that the
assumption that f0 is faithful requires that n ≤ ℵ0.) Be-
cause A is discrete, f0 =

∑n
k=1 tkgk, where {gk} is a com-

plete list of the normal pure states of A and
∑n
k=1 tk = 1.

Because f0 is faithful, we must have 0 < tj < 1 ∀j =
1, ..., n. Let E : N → A be the unique CE.

FACTS:
1. S is a singleton iff n = 1 (i.e. N = A).
2. S is finite dimensional iff n is finite.
3. S is a norm compact subset of N∗.
4. E(f0) is the unique element of SA.
PROOF OUTLINE: E(f0) has exactly the same form

as f0, where the gk now stand for the vector pure states
along the diagonal. (See the 2x2 example earlier.) Since
any normal g ∈ S is uniquely represented by a trace class
operator, that operator must be diagonal in order that A
be in the centralizer of g. This gives 4.

1 and 2 will follow if I show that for any two non-zero
tk, say t1, t2, there is a positive extension of the positive
functional t1g1 + t2g2. This was essentially done in the 2x2
example two slides ago.

If 3 is false, then S will contain non-normal state.
However, since any singular state must vanish on minimal
projections, this leads to an easy contradiction.
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THEOREM: If N is semifinite, then the following are
equivalent:

1. there exist abelian (for N) projections {pt} ⊂ A
with

∑
pt = 1 (and in particular, N is type I);

2. no normal state of A has a singular state extension
to N ;

3. no normal state of A has a non-normal state ex-
tension to N .

PROOF OUTLINE: 3→ 2 is trivial.
2→ 3. If 3 fails, then there is a normal state f0 of A

that has a non-normal state extension f = fn + fs. Then
f−fn is normal and positive on A with a singular extension
fs. Therefore 2 fails.

1→ 2. Suppose that 1 holds and that f is a singular
state ofN such that f0 = f |A is normal. Since pt is abelian,
then ptNp ⊂ A for each t. Thus f |ptNpt is both normal
and singular, hence equal to 0. But since f is normal on
A and

∑
t pt = 1, this means that f = 0, a contradiction.

2→ 1. If 1 is false, then WLOG A contains no abelian
projections at all. WLOG then there are two cases.

Case 1: Suppose A contains no finite projections. Let
I be the closed ideal of N generated by the finite projec-
tions. The dual space of N/I is positively isometric to
I⊥, which by weak* density of I in N consists entirely
of singular linear functionals. Since A contains no finite
projections, A is isometrically imbedded in N/I, hence its
dual space is the set of restrictions of functionals in I⊥. We
conclude that every normal state of A is the restriction of
a singular state of N .
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Case 2: If A contains a non-zero finite projection q,
then qA is a MASA of qNq. We may assume that q = 1, so
that N is finite. Now N cannot have a type I summand,
because A would have nonzero abelian projections, con-
trary to assumption. So N is type II1. Let τ be a normal,
faithful (WLOG) tracial state of N . If f0 = τ |A, we show
that f0 has a singular state extension.

For any n there are projections {qnj }2
n

j=1 ⊂ A that
are equivalent in N and have sum 1. For each i, j, n, let
vnij be a partial isometry effecting the equivalence of qni
and qnj , with the requirement that vnii = qni . Define pn =
2−n

∑2n

i,j=1 v
n
ij . It is easy to check that pn is a projection

in N with E(pn) = 2−n1.
Define a sequence of states of N by ϕn = 2nτ(·pn).

Note that

ϕn(a) = 2nτ(apn) = 2nτ(E(apn))

= 2nτ(aE(pn)) = 2nτ(a(2−n1)) = τ(a), a ∈ A,

so that any weak* subnet limit ϕ = limα ϕnα of {ϕn} in
N∗ extends τ |A. Moreover, for any m,

ϕ

( ∞∨
k=m

pk

)
= limϕnα

( ∞∨
k=m

pk

)
≥ limϕnα(pnα) = 1,

τ

( ∞∨
k=m

pk

)
≤
∞∑
m

τ(pk) = 2−m+1.
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Considering the complements of the projections ∨∞k=mpk,
we see that ϕ vanishes on projections of trace arbitrarily
close to 1. Now given any projection p ∈ N , find another
projection q with ϕ(q) = 0 and τ(p) + τ(q) > 1. The
formula p− (p ∧ q) ∼ (p ∨ q)− q implies τ(p ∧ q) = τ(p) +
τ(q) − τ(p ∨ q) > 0. Thus 0 6= p ∧ q ≤ p and ϕ(p ∧ q) ≤
ϕ(q) = 0, as required to show that ϕ is singular.

QUESTION: Does the last result require the semi-
finite assumption, or is that just a convenience for the
proof?
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COROLLARY: If N is semi-finite and the support of
f0 dominates no abelian projection in A, then f0 has a
singular state extension.

PROOF OUTLINE: We only need to add one thing to
the proof of the last theorem, namely that for the II1 case,
every normal state of A has a singular state extension.

Let f be a singular state extension of τ |A, let a ∈ A+

with τ(a) = 1, and define the state fa on N by

fa(b) = (a1/2fa1/2)(b) = f(a1/2ba1/2).

Since the set of singular functionals of N is left and right
invariant under multiplication by elements of N , then fa
is clearly singular. For b ∈ A,

fa(b) = f(a1/2ba1/2) = f(ab) = τ(ab) = (aτ)(b).

But {aτ : a ∈ A+, τ(a) = 1} is norm dense in the normal
states of A by the Radon-Nikodym Theorem.

Thus, for any normal state g of A there is a sequence
{an} of positive trace one elements of A such that ‖g −
anτ‖1 → 0 (the norm of A∗). Each state anτ lifts to
a singular state fn, and let F ′ be the set of such lifts.
Then F ′ is countable, so all its limit points in N∗ will be
singular states. Let K be the weak* closure of F ′ in N∗, so
K ⊂ N∗s . Consider the states of A determined by K|A, i.e.
restricting the states of K to A. Clearly {anτ} ⊂ K|A, and
K|A is weak* closed, so g ∈ K|A. Thus g has a singular
state extension.
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If we are willing to make the additional that A is ”not
too big”, then we can tie the previous results to the exis-
tence of conditional expectations.

THEOREM: If A is singly-generated and N is semifi-
nite, then the following are equivalent:

1. there exist abelian (for N) projections {pt} ⊂ A
with

∑
pt = 1 (and in particular, N is type I);

2. no normal state of A has a singular state extension
to N ;

3. no normal state of A has a non-normal state ex-
tension to N ;

4. there is a unique CE, E : N → A, that is also
normal and faithful;

5. there is a unique CE, E : N → A.

COROLLARY: Suppose that N is semi-finite and A
is singly generated. If the abelian (for N) projections in A
don’t have supremum equal to 1, then there are at least 2
CEs from N onto A, one of which is singular.
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Let’s review the situation. There are enough unsolved
problems for a dissertation or three, but let me highlight
some very specific conjectures.

1. If N is type III, every normal state f0 of A has a
singular extension.

COMMENT: It would be enough to show that there
exists one normal state of A with a singular extension.

2. If N = B(H) for a large H and if A is a continuous
MASA of N , then there are at least two distinct CEs from
N onto A.

COMMENT: I don’t know what those MASAs look
like.

3. If N is a type II1 factor and f0 = τ |A, S contains
a pure state of N?

COMMENT: Take your favorite II1 factor and MASA,
and don’t worry about generality; just prove something
about normal state extensions and pure sates.

4. If N is a type II1 factor and f0 = τ |A, then SA
contains a singular state.

COMMENT: We know this if A is singly generated.
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