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I
n 1824 the French mathematician Jean Bap-

tiste Joseph Fourier (1768–1830) in order to

describe certain observations, created the

term “greenhouse effect”, [7, 8]. In mod-

ern language this effect occurs when visible

spectrum sunlight passes through an enclosure-

creating barrier, such as glass or an atmosphere,

and the enclosure heats up because the bar-

rier absorbs/emits infrared spectrum radiation or

otherwise traps heat. This paper is one (small)

mathematical step on the journey that Fourier be-

gan. Our main goal is to describe a plausible model

wherein the proportion of extreme weather events,

such as tornados, among all weather events, can

be expected to increase as the concentrations of

greenhouse gases, such as carbon dioxide, increase

in the atmosphere.

In 1896 Swedish scientist Svante August Ar-

rhenius (1859–1927), 1903 Nobel Prize winner in

chemistry, was aware that atmospheric concen-

trations of CO2 (and other gases) had an effect

on ground level temperatures; and he formulated

a “greenhouse law for CO2”, [1]. Were Arrhenius

alive, the motivations for his study and the precise

values of physical constants used in his models

might change, but his greenhouse law remains

intact today. From a reference published about

102 years after [1], namely, page 2718 of [14], we

see Arrhenius’s greenhouse law for CO2 stated as:

(Greenhouse Law for CO2) ∆F = α ln(C/C0),
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where C is CO2 concentration measured in parts

per million by volume (ppmv); C0 denotes a base-

line or unperturbed concentration of CO2, and ∆F
is the radiative forcing, measured in Watts per

square meter,
W

m2 . The Intergovernmental Panel on

Climate Change (IPCC) assigns to the constant α

the value 6.3; [14] assigns the value 5.35. Radia-

tive forcing is directly related to a corresponding

(global average) temperature, by definition radia-

tive forcing is the change in the balance between

radiation coming into the atmosphere and radia-

tion going out. A positive radiative forcing tends

on average to warm the surface of the Earth,

and negative forcing tends on average to cool the

surface. (We will not go into the details of the quan-

titative relationship between radiative forcing and

global average temperature.)

Qualitatively his CO2 thesis, which Arrhenius

was the first to articulate, says: increasing emis-

sions of CO2 leads to global warming. Arrhenius

predicted that doubling CO2 concentrations would

result in a global average temperature rise of 5 to

6 deg C. In 2007 the IPCC calculated a 2 to 4.5

deg C rise. This is fairly good agreement given

that more than a century of technology separates

the two sets of numbers.

For the record, cf. [2], preindustrial concentra-

tions of CO2 are estimated to have been about

280 ppmv. From [2], page 43, we see a table of

global, average annual CO2 concentrations from

1960 when it was 316.91 ppmv to 2006 when

it was approximately 381.84 ppmv. In this table

the function of CO2 concentration versus time is

essentially an increasing function from 1960 to

the present (neglecting the annual fluctuation). We
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note that in 2008 CO2 concentrations of 387 ppmv
were measured in Svalbard, Norway.

If we exponentiate both sides of the greenhouse
law for CO2, we obtain a special case of what is
referred to as a “power law”. Thus

(Power Law in General Form) f [x] = βxα

Let us make some simple observations, which
we will use later. If a dependent variable f [x]
is a power-law function of (positive) independent
variable x, the log-log plot of ln f [x] versus ln x (if
β is not zero) is a straight line.

Conversely, if a collection of data points (y, x)
yields a log-log plot that is a straight line, i.e., the
points (ln y, ln x) lie at least approximately on a
(nonvertical) straight line, then y can be given by
a power law in terms of x.

There is also another characterizing property
of a power law, namely, self-similarity or inde-
pendence of scale. What this means is that if the
independent variable is “rescaled”, i.e., multiplied
by a (positive) constant, the basic form of the
relationship is unchanged, i.e., α does not change;
only β changes to a different constant. Thus in
the case of a set of data points that obey a power
law, if the independent variable is rescaled, the
straight line log-log graph translates to another
straight line parallel to the original, i.e., with the
same slope.

Before leaving this introduction, let us return
briefly to [14], page 2718. We note that the radiative
forcing formula for CO2 is among the simplest
of such formulas for trace greenhouse gases.
Other greenhouse gases, such as CH4 and N2O,
yield radiative forcing functions that are at least
superficially far more complex than simple power
laws. Note that for methane, CH4, and oxide
of nitrogen, N2O, the proportionality constants
corresponding to the α in the greenhouse law
for CO2 above are much smaller, with estimates
varying from .036 to .12; but concentrations of
CH4 and N2O are measured in parts per billion
by volume, ppbv, indicating that these gases are
potent even in relatively small concentrations.
Chlorofluorocarbons, CFCs, yield a simple linear
radiative forcing function, namely, such forcing is a
multiple α of changes in concentration measured
in ppbv, where values for α vary from .22 to

.33. (Radiative forcing, ∆F , is measured in
W

m2

throughout.) Finally, we would be remiss if we did
not mention that even though water vapor has
a residence time in the atmosphere measured in
days, cf. [13], page 27, the IPCC has recently stated
that its amplifying effects could more than double
the warming caused by CO2 on a global scale.

We close this introduction with related open
problems. Can the “weatherquake hypothesis”
(stated in the section titled “Weatherquakes and
Global Warming/Climate Change”) be deduced
from accepted basic principles of mathematics,

Figure 1. Gutenberg-Richter Table.

physics, and chemistry assuming everything we
know about, or assuming a simplified model

of, the atmosphere? Can the weatherquake hy-
pothesis be shown to hold for some general
class of “self-organizing” systems? Is it prov-

able that the Weatherquake Hypothesis cannot be
demonstrated in any of the aforementioned ways?

The Earthquake Distribution and Other
Power Laws
Figure 1, reproduced from [12], page 105, displays
an amazingly simple set of data, given that it

emanates from the complexity of earthquakes.
Again quoting from [12], page 2, we read the

following explanation of the magnitude scale for

earthquakes used by Gutenberg and Richter.
“The magnitude scale number is intended to

be logarithmic in the maximum amplitude of

earth motion at a fixed distance. The smallest
shocks recorded (only on sensitive instruments at
a distance of a few kilometers) are of magnitude 0;

shocks of magnitude 3 are usually felt; shocks

of magnitude 4
1

2
are capable of causing slight

damage; major earthquakes range from magnitude

7 to magnitude 8
1

2
. Increase in the magnitude by

half a unit corresponds to multiplication of the
energy released by a factor of 10, so that there is a
ratio of about 1017 between the energies released

in the largest and the smallest earthquakes.”
Thus the first column of data in the Gutenberg-

Richter Table, Figure 1, is the magnitude of

earthquakes. We are told that the numbers in
this first column are logarithms (presumably to
base 10) of something we shall refer to for sim-

plicity as earthquake intensity. If we take the
logarithm, to base 10, say, of the second column,
which is the number of earthquakes of a given

intensity occurring in a given year, we notice a
simple invariant. The sum of “log of intensity of
event” and “log of the number of events of that

intensity (per year)” is approximately constant,
namely, 8.
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The Gutenberg-Richter data thus yields a log-
log plot which is approximately a straight line.
This is an empirical fact, i.e., the results of actual
measurements of real earthquakes. This (linear)
approximation gets better the larger the geograph-
ical area involved and the longer the interval of
time. There is now an abundance of earthquake
data, cf., page 13 of [3], [18], [17], [16], for a
few examples, which we take a brief moment to
discuss. If one plots the log of N, the number
of events of magnitude M, versus M, seismolo-
gists traditionally refer to the (negative) of the
slope of this line as the “b value.” From [17],
page 276, we read: “Although the b values ap-
proximately equal 1 over long time scales and
large spatial scales, significant variations occur on
smaller scales.” Swarms of seismic events, lacking
a main shock, and which may be associated with
migration of magmatic fluids, are mentioned as
one example. This presents the interesting possi-
bility that subsets of seismic events may be more
finely classified according to their b value, and
thus the analogy with weather events (discussed
in the next section) becomes even closer. Flows of
magmatic fluids would intuitively seem more like
flows of air/water, than say movements of solid
earth crust; although earthquakes and flows of
magma are not entirely disassociated.

One must also make the obvious observation
that the earthquakes are in some sense bounded
above by the size of the earth and below by the
size of molecules; thus some aberrations are to be
expected in the extremes, although the Gutenberg-
Richter law appears to hold even when very small
earthquakes are included.

A priori there seems to be no obvious reason
why the number of earthquakes of a given intensity
is so simply related to the intensity of those
earthquakes. Nevertheless, it is an observed fact.
The main mathematical point, I repeat, is this:
seismic events (classified according to b value if
necessary) have associated with them a number,
called the intensity of the event, such that the log
of the number of events of a given intensity versus
the log of intensity is (approximately) a straight
line. Confronted with such a fact, we try to think of
some simple principle that might “explain” it—a
simple axiom from which the fact can be deduced.

The mathematics of the situation leads us
directly to such an axiom. The Gutenberg-Richter
data yields a linear log-log plot that must come
from a power law, as explained in the first section
of this paper. The numerical values of the slope
and intercepts of the line so determined depend
on the units chosen to make measurements and
the actual values measured. These actual values
are of great importance in geology, but to a “pure”
mathematician the essential fact is that the log-
log plot is a straight line. This fact all by itself
tells us that we are dealing with a phenomenon

that is independent of scale, e.g., a phenomenon

described by a power law.
In this particular case we can take the statement

(where C is a constant and logs are to base 10):

“log of intensity of event” + “log of the number of

events of that intensity (per year)” = C,

and get by exponentiation the equivalent state-
ment:

[“intensity of event”] times [“number of events of that

intensity (per year)”] = 10C .

Said informally, our axiom states that there is
no preferred “size” or “scale” of earthquake. Na-
ture expends the same total intensity shaking the
earth at one point on the Gutenberg-Richter scale
as it does at any other point on that scale. The
bigger the quakes, the fewer there are of them,
and the relationship between number and inten-
sity is fairly precise, namely, the relevant log-log
plot is very close to a straight line. It is interesting
to note the relationship between energy and in-
tensity, or magnitude. Seismologists estimate, cf.,
page 273 of [17], [18], the ratio of (radiated) en-
ergy expended by earthquakes of Richter magni-
tude n+1 divided by (radiated) energy expended
by earthquakes of Richter magnitude n (for n ≥ 4)
to be 101.5, roughly 31.6, or 32. This is close to
10π ≈ 101.497.

Our axiom, which we informally stated above,
is thus qualitatively equivalent to the Gutenberg-
Richter law, i.e., the table in Figure 1. Our axiom
that nature has no preferred size of earthquake
is (qualitatively) equivalent to the appropriate log-
log plot being a straight line (without quantitatively
specifying precisely the slope and intercepts of that
line).

It is in this qualitative spirit that we ask the
question: To what type of probability distri-
bution (or probability density function) does
the Gutenberg-Richter law lead? Let z denote
earthquake intensity, where z ≥ 1, then the
magnitude x of an earthquake of intensity z is

x =
1

2
log10 z, where the

1

2
reflects the historical

fact that a
1

2
increase on the Gutenberg-Richter

scale corresponds to multiplying the correspond-
ing earthquake intensity by 10. We can thus write
the following power law:

N[z] = β(.1)
1
2 log10 z = βz−

1
2 ,

for z ≥ 1, as qualitatively corresponding to the
the Gutenberg-Richter law for earthquakes, where
N[z] is the number of earthquakes of intensity z.

Since we are looking for a probability distribu-
tion, we change variables from z to x (if for no

other reason than that
∫∞
1 z

−
1
2dz is not finite) and

get N[x] = β(.1)x, for x ≥ 0. This is a normalized,
continuous form of what we will call the geomet-
ric probability distribution corresponding to the

earthquake data in Figure 1, ifβ = (
∫∞
0 (.1)

xdx)−1 =

−ln (.1) ≈ 2.30259.
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Thus our axiom, that nature has no preferred
size (or scale) for earthquakes, implies that earth-
quakes are geometrically distributed if the number
of earthquakes is plotted versus magnitude, i.e., the
logarithm of intensity.

I close this section by mentioning that there is
a wide variety of natural phenomena described by
power laws [3, 15].

Weatherquakes and Global Warming
Climate is, by definition, weather statistics. Thus
one might suppose that any number of mathe-
matical tools might be applicable to the study of
climate and weather. Dr. Roger Gallet, our friend
and a scientist with the National Oceanic and
Atmospheric Administration (NOAA) many years
ago initiated a sophisticated statistical analysis of
weather events using every tool of which we were
aware and more, including, for example, Gumbel’s
work, [11]. He was trying to demonstrate what
we refer to as Gallet’s Conjecture, viz., that the
proportion of extreme weather events among
all weather events increases as the atmosphere
(troposphere) becomes warmer. Our colleague,
Dr. Holley briefly joined the effort to statistically
verify Gallet’s Conjecture. About the time it was
becoming evident to us that the results would
likely not be definitive, sadly, Dr. Gallet became
ill and passed away. Add to this the fact that we
were familiar with the now famous work of Jerzy
Neyman on the statistics of smoking and health
from the last century, and how in the early years
it was ignored/attacked by some—with some suc-
cess since exact mechanisms by which cigarettes
impacted health were not then well understood.
Any analogous statistical analysis of weather
events by this author would likely be greeted
with even less enthusiasm. Finally we were (are)
of the opinion that should Gallet’s Conjecture
become statistically, obviously, unassailable, it
might be too late to do anything about it. Thus we
were motivated to bypass statistics and look for
a fundamental mechanism and/or principle (or
principles) that would imply the truth of Gallet’s
Conjecture.

Since power laws appear in such a wide variety
of natural phenomena, [3, 15], we investigated the
possibility that a power law might find a place in
the study of weather events.

We shall use the terms “weatherquake” and
“weather event” interchangeably. We can ask:
What is the distribution of the number of weather
events as a function of event intensity, or as a
function of the logarithm of event intensity? It
would be easy to wave our hands and say that
because weather events are influenced by many
small and seemingly unrelated random effects the
distribution of weather events should approxi-
mate the normal distribution. Of course, we could

have made the same hand-waving argument about
earthquakes, which we have seen are distributed
geometrically when plotted as a function of the
logarithm of event intensity. Ultimately this ques-
tion is to be answered by empirical observation of
weatherquakes, some of which has been done; cf.
[4].

The alert reader will have noticed that we have
not given a precise definition of weatherquake
other than a tautological one. Neither have we
given a definition of intensity of a weatherquake
or how to go about measuring same. These con-
siderations are actually part of our weatherquake
hypothesis.

The Weatherquake Hypothesis

There exists a definition of weatherquake and
there exists a definition of intensity of weath-
erquake such that nature has no preferred size
(or scale) of intensity of weatherquake. Significant
nonempty classes of such weatherquakes exist.

Although some statistical measures of hurri-
canes, for example, are not analogous to that of
earthquakes, [6], we have found no arguments
supporting the negation of the weatherquake
hypothesis, i.e., that there is a reasonable defi-
nition of weatherquakes or their intensity such
that nature prefers some intensities more than
others. Furthermore, one could disprove the
weatherquake hypothesis by showing that our
conclusion about extreme weatherquakes (in the
next section) implied by the weatherquake hy-
pothesis is false. However, empirical evidence
thus far is tending to confirm, not contradict, this
conclusion [9, 10, 4].

From the point of view of pure mathematics
we could remain silent on any proposed defi-
nitions of weatherquakes and their intensities,
but we owe the reader some discussion of these
topics. Thus virtually no one who has been in
the presence of a tornado would deny that such
is a weatherquake—same for a hurricane. These
and some other classes of weatherquake follow
power laws [4]. The data tell us that two different
classes of weatherquake can (and often do) follow
different power laws. This does not affect the con-
clusion(s) in the next section. In fact, hurricanes
switch from one power law to another at eighty-
five knots, which coincides with the formation of
the hurricane eye.

Thus we claim that the collection of classes
of weatherquakes to which the weatherquake
hypothesis/power laws apply is not only nonvac-
uous but socially and scientifically significant. For
historical reasons the Saffir-Simpson hurricane
wind scale and the Fujita scale of tornado inten-
sity were developed independently and are not
directly comparable. There is even a third class of
wind weatherquakes varying from light breezes to
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high-velocity wind storms (unidirectional) that ap-
pear to obey a power law, [4]. Certain collections
of precipitation weatherquakes are likely candi-
dates for satisfying the weatherquake hypothesis,
and so on. One possibly universal method of
defining weatherquakes and measuring their in-
tensity could be this: observe a peak in power, i.e.,
a peak in energy flow per unit time, in a volume
of atmosphere over a given geographical area in
a given interval of time. A number of interesting
theoretical investigations will suggest themselves
to the interested reader—such as comparisons
of local maxima of power in subintervals of an
interval of time with the maximum over the en-
tire interval, or comparing the total energy of a
weatherquake to its peak power, and so on. One
must keep in mind, however, practical limitations
of the type and number of observations likely to
be actually made in the field. We are confident
that the weatherquake hypothesis is satisfied, but
we do not know the entire collection of weather
events to which it applies.

Not everything that happens in the atmosphere
is a weatherquake, just as not every activity of
the earth’s crust is an earthquake. I mention tec-
tonic plate movements, “slow earthquakes”, and
pyroclastic flows as examples of things that hap-
pen (and are often associated with earthquakes)
but that are not always in themselves regarded as
earthquakes. The same is true of the atmosphere.

The important thing is this: for events in the
earth’s crust, respectively the earth’s atmosphere,
there is a significant class, respectively a collection
of classes, of quakes to which power laws apply.
To these classes the pure mathematics of the next
section applies. The model is so simple that little
room is left to escape certain conclusions. For a
bit more discussion see [4, 19]. We thus proceed
to our main conclusion.

Implications of the Weatherquake
Hypothesis for Extreme Events
Following the same arguments used in the case
of the Gutenberg-Richter law, we see that the
weatherquake hypothesis implies (restricting to
one type of weatherquake at a time if necessary)
that a power law gives the number of weath-
erquakes as a function of the intensity of said
weatherquakes. Also, from the same mathemati-
cal argument used in the case of earthquakes, it
follows that the number of weatherquakes (of a
given type that follow a given power law) plotted
versus the magnitude of weatherquake, i.e., loga-
rithm of intensity of weatherquake, is a geometric
distribution. Let’s suppose that this geometric dis-
tribution is Np[x] = βp

x, with 0 < p < 1, where

it is easily seen that β = −ln p if
∫∞
0 Np[x] dx = 1,

i.e., we have a probability distribution. We are
abusing terminology slightly because probabilists

refer to this Np as the probability density function
of an exponential random variable if we write
Np[x] = (−ln p )e(ln p )x, with x ≥ 0. Below we
will use the term expectation of Np, i.e., E[Np], as

probabilists do, namely, E[Np] =
∫∞
0 xβp

xdx.
Thus Np[x] is the number, actually the number

normalized, of weatherquakes of magnitude x,
where x is the logarithm of weatherquake in-
tensity. If we define extreme weatherquakes to
be those of magnitude x ≥ a, then Tp[a] =∫∞
a Np[x] dx is a measure of the amount of “ef-

fort” nature puts into extreme weatherquakes.
(This measure can be considered an understated
measure, since the horizontal axis, i.e., magni-
tude, is a logarithm of weatherquake intensity;
and the logarithm of intensity increases far more
slowly than actual intensity.) The Tp[a] we refer
to as the “tail past a” of our distribution. In a real
life situation, a is a numerical value indicating a
magnitude of weatherquake that no one denies is
extreme.

The proof of the theorem below is elementary
and is left as an exercise for the reader.

Theorem 1. Given 0 < p < 1 and the normal-
ized, geometric probability distribution Np[x] =
(−ln p) px, with x ≥ 0, the expectation E[Np]
satisfies

E[Np] =
−1

lnp

. The “tail past a” of Np, Tp[a] = −ln p
∫∞
a p

xdx,
satisfies

Tp[a] = p
a.

If 0 < p < q < 1, then we have the following for-
mula for the fractional increase in the expectation
of Nq relative to the expectation of Np:

E[Nq]− E[Np]

E[Np]
=
lnp

lnq
− 1.

We have the following formula for the fractional
increase in Tq[a] over Tp[a]:

Tq[a]− Tp[a]

Tp[a]
=

(
q

p

)a
− 1.

Let’s interpret the above theorem in the context
of weatherquakes. If we start with an atmosphere
satisfying Np and then warm it up, i.e., add ther-
mal energy, by the weatherquake hypothesis we
should then have an atmosphere satisfying Nq for
some q, 0 < q < 1. Thus there are three choices,
q = p, q < p, or p < q. Because we would expect
that E[Np] < E[Nq], this implies that p < q.

Now one way to look at this is via the median,

i.e., given p, for what value of a is Tp[a] =
1

2
? From

Theorem 1 we see that a = ln .5/ln p. Thus as p in-
creases monotonically in the open interval from 0
to 1, a increases monotonically from 0 to ∞. Thus
as p increases nature puts half of its total “effort”
into weatherquakes of increasing magnitude.
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Hence if there is global warming, e.g., we pass
from p to q with p < q, it is clear that Theorem
1 predicts an increase in the “effort” nature allo-
cates to extreme weather events. It also appears
that “under most circumstances”, asp increases to
q, the relative increase in Tp[a] is proportionately
larger than the relative increase in the expectation,
E[Np]. For instance, see the example at the end of
this section.

Note that (
q

p
)a − 1 increases as a increases, i.e.,

the higher the threshold we use to define “extreme
weatherquake” the larger the relative fractional in-
crease in the “effort” nature allocates to extreme
weatherquakes. It is thus possible to “cheat” by
taking “a” sufficiently large for a given p and q to
achieve a predetermined conclusion about the rel-
ative rise in extreme weatherquakes. Thus if “a is
large”, a relatively small increase in parameter p
(from p to q) yields a modest increase in expec-
tation (from E[Np] to E[Nq]) but a much larger
increase in extreme events.

Now let us observe something that may only
be interesting in the mathematical sense. There
is no way to be sure without finding real empiri-
cal data that matches the behavior we are about to
describe in this paragraph. (We have not yet found
any such data, by the way.) Observe that pa ln p,
for fixed a > 0, decreases monotonically from 0,

when p = 0, to −(ae)−1 at p = e−
1
a , then increases

monotonically to 0 at p = 1. Thus if a is fixed, i.e.,
the size of extreme weatherquake is determined,
then it is possible to find (infinitely many) exam-
ples of p < q such that pa lnp = qa ln q, i.e., the
fractional increase in expectation is the same as
the fractional increase in the corresponding “tails

past a.” Just pick 0 < p < e−
1
a < q < 1 suitably. It

is also clearly possible to pick p and q in a similar
fashion so that the fractional increase in expecta-
tion is more than the fractional increase in “tails
past a”. Of course, qmust satisfy e−

1
a < q < 1, and

the options for q become more and more limited
the larger a is.

Example. Suppose that weatherquakes are dis-
tributed according to N.1[x] = β (.1)x, where
β = −ln .1 = ln 10. The expectation of N.1 is
−(ln .1)−1 ≈ 0.434294. Let us choose a = 1, i.e.,
any weatherquake of magnitude x ≥ 1 is extreme.

Suppose there is a warming and p = .1 is re-
placed by q = .11, leading to N.11[x] = γ (.11)x ,
where γ = −ln (.11) ≈ 2.20727. The expectation
of N.11 is approximately .453047, which is about
4.32% greater than the expectation of N.1. But the
relative increase, {T.11[1] − T.1[1]}/T.1 is 10%. Of
course, the situation is more dramatic for larger
a. For example, if a = 2, then the 10% becomes
21%, and so on. Note that on a finite earth, if we
took ∞ = 10 in this example, the same conclusion
results.

The size of the planet limits the size of weath-
erquakes, but we note with interest that on Decem-
ber 9, 1997, the Associated Press reported a dust
storm covering 20% of Mars.

Summary and Conclusion
People are putting (oxides of) carbon into the at-
mosphere: more than a ton of carbon per person
per year on a global average. The 1896 law of Ar-
rhenius, which has never been repealed, predicts
and measurements confirm that warming is occur-
ring. Carbon dioxide deposition in the oceans is
lowering their pH (making them more acidic), with
possibly dramatic long-term consequences [5].

We have demonstrated in this article that,
subject to a reasonable hypothesis, a relatively
small increase in global warming leads to larger
increases than one might expect in extreme weath-
erquakes such as tornados, hurricanes, and any
other class of weatherquake that satisfies our
weatherquake hypothesis. Unanticipated conse-
quences of human activities can sometimes be
understood with the help of mathematics, even
elementary mathematics, cf., [19].
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