University of Colorado Department of Mathematics Problem of the Month November 2019

Let $g \geq 0$ be a continuous function on $[0,\infty)$ that is monotone nonincreasing. Assume that $\int_0^\infty g(x) \, dx < \infty$. Prove that for any continuous function f on $[0,\infty)$ satisfying $|f| \leq g$, one has

$$\lim_{h \to 0^+} h \sum_{n=1}^{\infty} f(nh) = \int_0^{\infty} f(x) \, dx.$$