If $M \in M_{2 \times 2}(\mathbb{Z})$ is a 2×2 integer matrix, then by a *cycle of length n for M* we mean a nonzero 2×1 vector v with integer entries such that

$$v, \ Mv, \ M^2v, \ldots, \ M^nv = v$$

are n distinct vectors that M permutes in a cycle.

What are the possible lengths of cycles for matrices in $M_{2 \times 2}(\mathbb{Z})$?