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Q.1 Let X be a topological space, let Y be a set, and let f : X → Y be a
function. Construct a topology on Y with the following property: if Z
is a topological space and g : Y → Z is a function, then g is continuous
if and only if g ◦ f is continuous. Prove that your topology has the
required property.

Q.2 Prove that Rn and Rm are not homeomorphic unless n = m.

Q.3 Recall that the n-th homotopy group πn(X,x) of a topological space X
with a basepoint x is the set of basepoint preserving homotopy classes
of maps Sn → X that send the basepoint of Sn to x. Suppose that
f : X → Y is a covering space. Prove that the map f∗ : πn(X,x) →
πn(Y, f(x)), sending α : Sn → X to f ◦ α, is a bijection for all n ≥ 2.
(Note that the group structure on πn(X,x) is not relevant to this
problem.)

Q.4 Let a, b ∈ R, and consider the subset S of R3 defined by the equations

xyz = a, x+ y + z = b.

(a) Show that if a 6= 0 and b3 6= 27a, then S is a smooth submanifold
of R3.

(b) Suppose that a = 0 and b = 1. Identify the points of S where S
is not a smooth submanifold of R3.

Q.5 Consider the two vector fields on R3 with coordinates (x, y, z) given
by

X =
∂

∂y
+ z

∂

∂x
, Y =

∂

∂z
+ y

∂

∂x
.

(a) Show that [X,Y ] = 0.

(b) Compute the flows θt of X and φs of Y , and show directly that
for any point p = (a, b, c) ∈ R3 and any s, t ∈ R,

θt(φs(p)) = φs(θt(p)).

(c) Use part (b) to give a parametrization (x(s, t), y(s, t), z(s, t)) for
the (unique!) surface passing through the point p = (1, 0, 0) and
tangent to the vector fields X and Y at each point. Then give an
equation of the form F (x, y, z) = 0 that describes this surface.

Q.6 Define a 1-form ω on R2 \ {(0, 0)} by

ω = −
(

y

x2 + y2

)
dx+

(
x

x2 + y2

)
dy.

(a) Let C be the circle of radius r > 0 centered at the origin, oriented
counterclockwise. Evaluate the integral

∫
C ω by direct computa-

tion.

(b) Calculate dω.

(c) Let C ′ be the curve defined implicitly by the equation x4+y2 = 1,
oriented counterclockwise. Compute the integral

∫
C′ ω.


