RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS!

Geometry/Topology

Ph.D. Preliminary Exam Department of Mathematics University of Colorado Boulder

January, 2017

INSTRUCTIONS:

- 1. Answer each of the six questions on a separate page. Turn in a page for each problem even if you cannot do the problem.
- 2. Label each answer sheet with the problem number.
- 3. Put your number, not your name, in the upper right hand corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the graduate secretary as to which number you have chosen.

Problem 1. Compute the fundamental group of $\mathbb{R}^3 - C$ where

$$C = \{(x, y, z) \mid x = 0, y^2 + z^2 = 2\}.$$

(Hint: Consider a tube around C whose inner hole has been filled by a disk.)

Problem 2. Let $p: X \to Y$ be a continuous closed surjection.

- (a) Let $U \subset X$ be an open set which contains $p^{-1}(\{y\})$. Prove that there is an open neighborhood W_y of y such that $p^{-1}(W_y) \subset U$. (Hint: Consider $X \setminus U$.)
- (b) Recall that X is normal if the one point sets in X are closed and, for every pair disjoint of closed sets A and B, there exists disjoint open sets U and V such that $A \subset U$ and $B \subset V$. Show that if X is normal, then so is Y.

Problem 3. Let $p: \widetilde{X} \to X$ be the universal cover of a connected and locally-path connected space X and let $A \subset X$ be a connected and locally path-connected subspace. Let \widetilde{A} be a path component of $p^{-1}(A)$.

- (a) Show that $\widetilde{A} \to A$ is a covering space.
- (b) Prove that the image of

$$\pi_1(\widetilde{A}, \widetilde{a}_0) \to \pi_1(A, a_0)$$

coincides with the kernel of $\iota_* : \pi_1(A, a_0) \to \pi_1(X, a_0)$, where $\widetilde{a}_0 \in \widetilde{A}$ is any basepoint, $a_0 = p(\widetilde{a}_0)$, and $\iota : A \hookrightarrow X$ is the canonical embedding.

Problem 4. (a) Show that there is no immersion $S^1 \to \mathbb{R}$.

(b) Consider the function $f : \mathbb{R}^3 \to \mathbb{R}^2$, $(x, y, z) \mapsto (x^3 z, xy + z)$. At which point is f a submersion? Determine the regular values of f.

Problem 5. Define $\omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4 + dx_5 \wedge dx_6$ as a 2-form on \mathbb{R} . Show that no diffeomorphism $\varphi : \mathbb{R}^6 \to \mathbb{R}^6$ satisfying $\varphi^* \omega = \omega$ can map the unit sphere S^5 to a sphere of radius $r \neq 1$.

Hint: consider $\omega \wedge \omega \wedge \omega$.

Problem 6. Recall that an n-dimensional manifold M is called *parallelizable* if its tangent bundle is trivial. Which of the following manifolds are parallelizable? Provide a short justification of your answer in a sentence.

- (i) The *n*-torus $(S^1)^n = \mathbb{R}^n / \mathbb{Z}^n$ (where \mathbb{Z}^n is the subgroup of the additive group of \mathbb{R}^n consisting of points whose coordinates are all integers);
- (ii) the sphere S^2 ;
- (iii) the real projective plane \mathbb{RP}^2 .