RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS!

Geometry-Topology Ph.D. Preliminary Examination Department of Mathematics University of Colorado

January, 2015

INSTRUCTIONS:

- (1) Answer each of the six questions on a separate page. Turn in a page for each problem even if you cannot do the problem.
- (2) Label each answer sheet with the problem number.
- (3) Put your number, not your name, in the upper right hand corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the graduate secretary as to which number you have chosen.

Problem 1. Let (X, \mathfrak{T}) be a topological space, and let \sim be an equivalence relation defined on X. Denote by $(X/\sim, \mathfrak{Q})$ the set of equivalence classes with the quotient topology \mathfrak{Q} . Prove that if $(X/\sim, \mathfrak{Q})$ is Hausdorff, then every equivalence class C in X is a closed set of (X, \mathfrak{T}) .

Problem 2. Let $Q = [0, 1] \times [0, 1]$ be the unit square with the topology induced from the standard topology in \mathbb{R}^2 . Define the following equivalence relation \sim on Q:

- every point is equivalent to itself;
- (0, x) is equivalent to $(1, x) \forall x \in [0, 1];$
- (x, 0) is equivalent to $(1 x, 1) \forall x \in [0, 1]$.

The Klein bottle KB is defined to be the topological space $(Q/\sim, \mathfrak{Q})$ where \mathfrak{Q} is the quotient topology.

- (1) Show (pictorially if you like) that the 2-torus \mathbb{T}^2 is a double cover of the Klein bottle \mathbb{KB} .
- (2) Can a closed orientable surface that is not homeomorphic to the 2-sphere or the 2-torus be a cover of the 2-torus \mathbb{T}^2 ? Explain.

Problem 3. Let $(\mathbb{R}^2, S\mathcal{T}_2)$ be \mathbb{R}^2 with the standard topology $S\mathcal{T}_2$. Let C be the subset of \mathbb{R}^2 defined below, and let $(C, S\mathcal{T}_2|_C)$ be C with the induced topology from $S\mathcal{T}_2$. Use the Seifert–Van Kampen Theorem to find the fundamental group of $(C, S\mathcal{T}_2|_C)$.

$$C = \left(S_1 \bigcup S_2 \bigcup S_3 \bigcup \{(x,0) | 0 \le x \le 5, x \in \mathbb{R}\}\right) \subset \mathbb{R}^2,$$

where

$$S_i = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = i\}, \ i = 1, 2, 3.$$

Problem 4. Consider the vector fields on \mathbb{R}^3 :

$$X = x(2y + \cos y)\frac{\partial}{\partial x} - \frac{\partial}{\partial z}, \quad Y = \frac{\partial}{\partial y} + \frac{\partial}{\partial z}.$$

- (1) Write down a submanifold N of \mathbb{R}^3 containing the point (0, 1, 0) and having the property that there is an open neighborhood $U \subseteq N$ of (0, 1, 0) such that for each point $n \in U$ the tangent space $T_n N \subseteq T_n \mathbb{R}^3$ is equal to the span of X(n) and Y(n).
- (2) Compute the Lie bracket [X, Y].
- (3) Let \mathcal{D} be the set of vector fields that can be written in the form fX + gY for some functions $f, g \in C^{\infty}(\mathbb{R}^3)$. Is [X, Y] in \mathcal{D} ? Explain.
- (4) Can you write down a submanifold N of \mathbb{R}^3 containing the point (1,0,0) and having the property that there is an open neighborhood $U \subseteq N$ of (1,0,0) such that for each point $n \in U$ the tangent space $T_n N \subseteq T_n \mathbb{R}^3$ is equal to the span of X(n) and Y(n)? Explain.

Problem 5. Let M be a smooth manifold.

(1) Let $p \in M$. Show there is an open neighborhood U of p such that for all $q \in U$, there is a diffeomorphism $f: M \to M$ such that f(p) = q. [Hint: you may want to consider flows of appropriately chosen vector fields, or, alternatively maps $\mathbb{R}^n \to \mathbb{R}^n$ of the form $x \mapsto x + \eta(x)y$ with $y \in \mathbb{R}^n$ and $\eta(x)$ an appropriately chosen function.] (2) Deduce from part (1) that if M is connected, then the action of the diffeomorphism group of M on M is transitive; i.e., show that given any two points $p, q \in M$ there is a diffeomorphism $f: M \to M$ with f(p) = q.

Problem 6. Let (M, g) be a Riemannian manifold with Riemannian curvature tensor R. Consider the (0, 2)-tensor ω , defined by the trace

$$\omega(u,v) := \operatorname{tr}(w \mapsto R(u,v)(w)),$$

where u, v, w are vector fields on M. Show that $\omega = 0$.