RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS!

Geometry/Topology

Ph.D. Preliminary Exam Department of Mathematics University of Colorado Boulder

January, 2015

INSTRUCTIONS:

- 1. Answer each of the six questions on a separate page. Turn in a page for each problem even if you cannot do the problem.
- 2. Label each answer sheet with the problem number.
- 3. Put your number, not your name, in the upper right hand corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the graduate secretary as to which number you have chosen.

Problem 1. Recall that a topological space X is said to be *normal* if its points are closed subsets and for every pair of disjoint closed subsets A and B of X there is a pair of disjoint open subsets U and V with $A \subset U$ and $B \subset V$. Let $\pi : X \to Y$ be a surjective continuous and closed map. Show that if X is a normal space, then Y is normal as well.

Problem 2. Let $X = S^1 \times S^1$. Prove that for every $n \ge 2$, every continuous map $S^n \to X$ is homotopic to a constant map.

Problem 3. Let $\operatorname{GL}_n(\mathbb{R})$ be the space of $n \times n$ invertible matrices with entries in \mathbb{R} together with the natural manifold structure inherited from the ambient space of $n \times n$ matrices with entries in \mathbb{R} . Prove that the conjugation map

$$\operatorname{GL}_n(\mathbb{R}) \times \operatorname{GL}_n(\mathbb{R}) \to \operatorname{GL}_n(\mathbb{R}), \quad (g,h) \mapsto ghg^{-1}$$

is differentiable and compute its tangent map. Conclude that the conjugation map is continuous.

- **Problem 4.** (i) Show that $GL_n(\mathbb{R})$ with the topology as in Problem 3 is disconnected for all positive integers n.
 - (ii) Show that for even *n* the matrix $-1_n := \text{diag}(-1, \dots, -1)$ can be connected by a path in $\text{GL}_n(\mathbb{R})$ with the identity matrix 1_n .
- (iii) Let $\operatorname{GL}_n(\mathbb{R})^+$ be the set of matrices in $\operatorname{GL}_n(\mathbb{R})$ with positive determinant. Show that $\operatorname{GL}_n(\mathbb{R})^+$ is path connected. (Hint: Use Problem 3, Problem 4 (ii), and the fact that every matrix is conjugate to an upper triangular matrix to construct a path between a matrix with positive determinant and the identity matrix.)
- (iv) Compute $H_0(\operatorname{GL}_n(\mathbb{R}))$ for all positive integers n.

Problem 5. Let M be a compact, oriented n-dimensional manifold (without boundary) and suppose that ω and η are p- and q-forms on M with p + q = n - 1. Prove that

$$\int_M d\omega \wedge \eta = (-1)^{p+1} \int_M \omega \wedge d\eta.$$

Problem 6. Let N be a compact embedded submanifold of a manifold M. Show that $\Omega^p(M) \to \Omega^p(N)$ is surjective for all p.