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1. Consider the topological spaces Q1 = S1 × B2 ⊆ R4 and Q2 = B2 × S1 ⊆ R4, where
B2 is the unit disc in R2 and S1 is its boundary, the unit circle. Endow Qj with
the topology induced from the standard topology on R4, j = 1, 2. Note in particular
that ∂Qj = S1×S1, j = 1, 2. Consider the quotient space X obtained by identifying
(w1, w2) ∈ Q1 with (w2, w1) ∈ Q2 whenever w1 and w2 are both in the unit circle.
Compute the fundamental group of X using the van Kampen theorem.

2. (a) Show that R is not homeomorphic to R2 (with the standard topologies).

(b) Is the topological space R (endowed with the standard topology) homeomorphic
to the topological space R (endowed with the finite complement topology)?

3. Let (M,d) be a metric space.

(a) Show that the distance function d : M ×M → R is continuous. Here M ×M
has the product topology.

(b) If A and B are disjoint compact subsets of M , show that

d(A,B) = inf
x∈A,y∈B

d(x, y)

is positive, and that there are points x0 ∈ A and y0 ∈ B such that d(A,B) =
d(x0, y0).

4. Suppose M is a smooth orientable compact manifold of dimension 2n. Suppose ω is
a 2-form for which dω = 0. Let µ = ωn = ω ∧ω ∧ · · · ∧ω (n times), and suppose that
µ is a nowhere-zero 2n-form on M .

(a) Show that dµ = 0.

(b) Show that µ is not dβ for any (2n− 1)-form β.

(c) Conclude that ω is not dα for any 1-form α.

5. Suppose f : R2 → R3 is given by

f(u, v) = (u+ v, uv, u− v).

(a) If ω = y dx+ x dy + y dz, compute f∗ω.

(b) Is f∗ω = dβ for some 1-form β on R2?

(c) Calculate
∫
∂I2 f

∗ω over the boundary of the unit square I2 in R2 defined by the
region inside the lines x = 0, x = 1, y = 0, and y = 1.

6. Consider the map F : R3 → R2 defined by

F (u, v, w) = (w2 − uv, v2 + u2).

At which values (a, b) is F−1(a, b) a smooth one-dimensional submanifold of R3?


