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Q.1 Define a topology on the set R of real numbers by the condition that
U ⊆ R is open if and only if it is either empty or contains the interval
[0, 1). Then

(a) What is the interior of the set [0, 1]? And its closure?

(b) Does this topology on R satisfy the T0 condition?

(c) Is R connected in this topology?

(d) Is R compact in this topology?

Q.2 Consider the 2-torus T2 = T × T, where T = {z ∈ C | |z| = 1} is the
unit circle.

(a) What is the universal cover of T2?

(b) Describe the one-point compactification of T2 minus two distinct
points. What is the fundamental group of the one-point com-
pactification of T2 minus two distinct points?

Q.3 Prove that the singular homology Ht(X) of the space X = pt consisting
of a single point is equal to

Ht(X) =

{
Z if t = 0
0 if t > 0

Q.4 Let M be the subset of Euclidean R3 defined by the zeros of the func-
tion

f(x, y, z) = xy − z.

(a) Prove that M is a submanifold of R3.

(b) Define a local coordinate system on M and compute the Rieman-
nian metric induced on M by its embedding into Euclidean R3

in terms of these local coordinates.



Q.5 Let G be a Lie group. A vector field v on G is left-invariant if, for all
g, h ∈ G,

(Lg)∗(v|h) = v|gh,

where Lg denotes left multiplication by g.

(a) Show that the space of left-invariant vector fields on G is isomor-
phic to the tangent space of G at the identity.

(b) Use part (a) to prove that the tangent bundle of a Lie group is
trivial. (A one-sentence description of how to construct a trivial-
ization of the tangent bundle of G is sufficient.)

(c) Show that the vector field

v = x
∂

∂x

on the (abelian) Lie group (R>0,×) (i.e., the group of positive
real numbers under multiplication) is left-invariant, and compute
its flow from an arbitrary point.

Q.6 (a) State Stokes’ Theorem.

(b) Let M be a smooth manifold, and ω ∈ Ωr(M) an r-form on M .
Suppose that

∫
Σ ω = 0 for every r-dimensional submanifold Σ of

M which is diffeomorphic to an r-sphere. Prove that dω = 0.


