RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS!

Geometry-Topology Ph.D. Preliminary Examination Department of Mathematics University of Colorado

August, 2017

INSTRUCTIONS:

- (1) Answer each of the six questions on a separate page. Turn in a page for each problem even if you cannot do the problem.
- (2) Label each answer sheet with the problem number.
- (3) Put your number, not your name, in the upper right hand corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the graduate secretary as to which number you have chosen.

Problem 1. For j = 0, 1, let $T_j \subset \mathbb{R}^3$ be the 2-torus obtained by rotating the circle $C_j \subset \mathbb{R}^3$

$$C_j = \begin{cases} x = 0\\ (y - 3)^2 + (z - 3j)^2 = 1 \end{cases}$$

about the z-axis; endow T_j with the subspace topology induced from the standard topology on \mathbb{R}^3 . Parameterize the circle C_j by:

$$c_j(t) = (0, 3 + \cos(t), 3j + \sin(t)), \ t \in [0, 2\pi], \ j = 0, 1.$$

Let $X := (T_0 \sqcup T_1) / \sim$ be the quotient space of the disjoint union

$$T_0 \sqcup T$$

modulo the equivalence relation \sim generated by:

$$\forall t \in [0, 2\pi] : c_0(t) \sim c_1(t).$$

- (1) What is $H_0(X)$? Explain.
- (2) Use the Seifert–van Kampen Theorem to compute the fundamental group of X.

Problem 2. Let $(\mathcal{X}, \mathfrak{T})$ be a topological space, and let $\{A_{\lambda} : \lambda \in \Lambda\}$ be a collection of compact subsets of \mathcal{X} .

- (1) Prove that if Λ is finite, then $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is compact.
- (2) Give an example of a topological space $(\mathcal{X}, \mathfrak{T})$, an infinite set Λ , and a collection $\{A_{\lambda} : \lambda \in \Lambda\}$ of pairwise disjoint non-empty compact subsets of \mathcal{X} such that $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is compact.

Problem 3. Consider the topological subspace Y of \mathbb{R}^2 , with the subspace topology induced from the standard topology on \mathbb{R}^2 , and formed by the lines as in the figure below:

- (1) The space Y is homotopic to a bouquet of circles. How many? Explain.
- (2) Is the space Y homeomorphic to a bouquet of circles? Explain.

Problem 4. Let *n* be a positive integer, and let (a_{ij}) be a nonzero symmetric $(n + 1) \times (n + 1)$ matrix with real entries a_{ij} . Consider the function

$$f: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$$
$$f(x_0, \dots, x_n) = \sum_{i,j=0}^n a_{ij} x_i x_j$$

and let $Q := f^{-1}(0) \cap (\mathbb{R}^{n+1} - \{0\})$ be the corresponding zero set of f in $\mathbb{R}^{n+1} - \{0\}$.

(1) Use the Implicit Function Theorem to show that Q is a smooth submanifold of $\mathbb{R}^{n+1} - \{0\}$, provided that $\det(a_{ij}) \neq 0$, i.e., the determinant of the matrix (a_{ij}) is nonzero.

,

(2) Can the converse to part (1) fail? In other words, can Q be a smooth submanifold of $\mathbb{R}^{n+1} - \{0\}$ even if $\det(a_{ij}) = 0$? Explain.

Problem 5. Let M be a smooth manifold. Denote by $\mathfrak{X}(M)$ the vector space of smooth vector fields on M, and for each nonnegative integer k denote by $\Omega^k(M)$ the vector space of smooth k-forms on M.

(1) Let $X_1, \ldots, X_{k+1} \in \mathfrak{X}(M)$ and $\omega \in \Omega^k(M)$. It is a fact that $d\omega(X_1, \ldots, X_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i+1} X_i(\omega(X_1, \ldots, \hat{X}_i, \ldots, X_{k+1}))$ $+ \sum_{1 \le i < j \le k+1} (-1)^{i+j} \omega([X_i, X_j], X_1, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_{k+1}).$

Confirm this fact for 1-forms; i.e., for the case k = 1. The notation \hat{X}_i indicates that X_i is to be omitted.

(2) Given a covariant derivative ∇ on M, there is an induced map

$$D: \mathfrak{X}(M) \times \Omega^{k}(M) \longrightarrow \Omega^{k}(M)$$
$$(D_{X}\omega)(X_{1}, \dots, X_{k}) = X (\omega(X_{1}, \dots, X_{k}))$$
$$-\sum_{i=1}^{k} \omega (X_{1}, \dots, X_{i-1}, \nabla_{X}X_{i}, X_{i+1}, \dots, X_{k})$$

where $X, X_1, \ldots, X_k \in \mathfrak{X}(M)$ and $\omega \in \Omega^k(M)$; here we are denoting $D(X, \omega) = D_X \omega$. It is a fact that for $X_1, \ldots, X_{k+1} \in \mathfrak{X}(M)$ and $\omega \in \Omega^k(M)$, if ∇ is torsion-free, then

$$d\omega(X_1,\ldots,X_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i+1} (D_{X_i}\omega)(X_1,\ldots,\hat{X}_i,\ldots,X_{k+1}).$$

Confirm this fact for 1-forms; i.e., for the case k = 1. [Hint: Use part (1), and recall that the torsion T of ∇ is defined by $T(X_1, X_2) = \nabla_{X_1} X_2 - \nabla_{X_2} X_1 - [X_1, X_2]$.]

(3) Given a covariant derivative ∇ on M, we say that a smooth k-form $\omega \in \Omega^k(M)$ is parallel with respect to ∇ if $D_X \omega = 0$ for all smooth vector fields $X \in \mathfrak{X}(M)$. Use part (2) of this problem (without proof) to show that if a smooth k-form $\omega \in \Omega^k(M)$ is parallel with respect to a torsion-free connection ∇ , then ω is d-closed.

Problem 6. Let M be a compact oriented manifold of dimension n without boundary, and let k be an integer such that $0 \le k \le n$. Show that if $\omega \in \Omega^k(M)$ is *d*-exact and $\eta \in \Omega^{n-k}(M)$ is *d*-closed, then one has

$$\int_M \omega \wedge \eta = 0.$$