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Q.1 Suppose that X is a topological space, and let

∆ = {(x, x)
∣∣ x ∈ X}.

Prove that X is Hausdorff if and only if ∆ is a closed subset of X×X.

Q.2 For each n, let Xn ⊂ R2 be the circle of radius 1
n centered at ( 1

n , 0).
Let X =

⋃∞
n=1Xn. Prove that X has no universal cover.

Q.3 Suppose that E is a contractible topological space and G is a group
acting freely and properly discontinuously on E. Let e be a point of
E, let X = E/G be the set of G-orbits, with the quotient topology,
and let x be the image of e in X.

Recall that RP 2 is the quotient of the 2-sphere S2 by the equivalence
relation (x, y, z) ∼ (−x,−y,−z), with the quotient topology. With X
as above, prove that there is a continuous map RP 2 → X that is not
homotopic to a constant if and only if there is an element g ∈ G such
that g 6= 1 but g2 = 1. (Hint: What is π1(X,x)?)

Q.4 Consider the subset S ⊂ R3 defined by the equations

x2 + y2 = a, yz = b,

where a, b are real numbers with a > 0.

(a) Show that if b 6= 0, then S is a smooth submanifold of R3.

(b) Show that S is not a smooth submanifold of R3 when b = 0.

Q.5 Consider the two vector fields on R2 given by

X = x
∂

∂x
− 2y

∂

∂y
, Y =

∂

∂y
.

(a) Find the smooth flow on R2 whose infinitesimal generator is X;
i.e., find the (unique!) smooth map θt : R2 → R2 with the prop-
erty that θ0 = Id |R2 and

d

dt

∣∣∣∣
t=0

θt(p) = Xp, for all p ∈ R2.

(b) Find LXY using part (a) and the definition of Lie derivative

LXY =
d

dt

∣∣∣∣
t=0

d(θ−t)(Y ).

(c) Compute the Lie bracket [X,Y ] directly and check that your an-
swer is the same as your answer to part (b).



Q.6 Let M be a smooth, oriented, 2n-dimensional manifold. A 2-form ω
on M is called a symplectic form on M if dω = 0 and the 2n-form

ωn =
n times︷ ︸︸ ︷

ω ∧ · · · ∧ ω is a nowhere-vanishing 2n-form on M . (This means
that, in terms of any local coordinate chart (U, (x1, . . . , x2n)) on M ,
we can write ωn = fdx1 ∧ · · · ∧ dx2n for some nonvanishing function
f : U → R.)

(a) Let ω be a symplectic form on M . Let (U,x) and (V,y) be local
coordinate charts on M that are compatible with the orientation
of M , and suppose that U ∩ V 6= ∅. Show that on U ∩ V , when
we write ωn as

ωn = f dx1 ∧ · · · ∧ dx2n = g dy1 ∧ · · · ∧ dy2n,

the nonvanishing functions f, g : U ∩ V → R must have the same
sign; i.e., they are either both positive-valued or both negative-
valued.

(b) Suppose that M = R4. Show that the 2-form

ω = dx1 ∧ dx2 + dx3 ∧ dx4

is an exact symplectic form on R4. (Recall that a 2-form ω on M
is exact if ω = dα for some 1-form α on M .)

(c) Suppose that M is compact with no boundary. Show that no
symplectic form on M is exact.


