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Q.1 Let X be a topological space and ∼ an equivalence relation on X. Let Y = X/ ∼ and let
π : X → Y be the quotient map. Recall that the quotient topology on Y is defined as follows:
a set U ⊂ Y is defined to be open if and only if the set π−1(U) is open in X.

(a) Show that the quotient topology is a topology on Y .

(b) Let X = R, and let Q ⊂ R denote the set of rational numbers. Define an equivalence
relation on R by the condition that x1 ∼ x2 if and only if x1 − x2 ∈ Q. Determine the
quotient topology on X/ ∼.

Q.2 Let X = T2 = R2/Z2, and let q : R2 → X denote the quotient map. Let x0 denote the
image of the point (0, 0) in X. The fundamental group π1(X,x0) is generated by two loops
α, β : [0, 1]→ X, defined as follows: let ξ, η : [0, 1]→ R2 be the curves

ξ(t) = (t, 0), η(t) = (0, t), 0 ≤ t ≤ 1,

and let
α(t) = q(ξ(t)), β(t) = q(η(t)).

(a) Find a homotopy from α ∗ β to β ∗ α, and conclude that π1(X,x0) is abelian.

(b) For integers m and n, let γ : [0, 1]→ R2 be the curve

γ(t) = (mt, nt), 0 ≤ t ≤ 1.

Show that
q ◦ γ ' αm ∗ βn

by constructing an explicit homotopy.

Q.3 Use Van Kampen’s theorem to compute the fundamental group of the “figure 8” X = S1∨S1:
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Q.4 Let q : R2 → T2 = R2/Z2 be the quotient map. Let (x, y) be the standard coordinates on R2,
and consider the 1-form on R2 given by

ω = dx+ cos(2πy) dy.

(a) Show that ω is closed and exact on R2.

(b) Show that there exists a 1-form η on T2 such that q∗η = ω. (Hint: it suffices to show
that for any deck transformation f : R2 → R2, f∗ω = ω.)

(c) Let γ : [0, 1]→ R2 be the path given by γ(a) = (a, 0). Compute
∫
γ ω.

(d) Show that η is closed, but not exact, on T2.



Q.5 Let M2×2(R) be the space of 2 × 2 matrices with real entries, let S2×2(R) be the space of

symmetric 2×2 matrices with real entries, and let J =

[
1 0
0 −1

]
. Define a map f : M2×2(R)→

S2×2(R) by
f(A) = ATJA.

(a) Compute f and the tangent mapDf explicitly in terms of coordinates. (Use the standard
identifications M2×2(R) ∼= R4 and S2×2(R) ∼= R3 to define coordinates on each space, so
that f can be regarded as a map from R4 to R3.)

(b) Show that the set
{A ∈M2×2(R) | ATJA = J}

is a smooth submanifold of M2×2(R).

Q.6 Let
M = RP2 = (R3 \ {0})/ ∼,

where z1, z2 ∈ R3 \{0} satisfy z1 ∼ z2 if and only if z1 = λz2 for some nonzero λ ∈ R. Denote
the equivalence class of a point (z0, z1, z2) ∈ R3 \ {0} by [z0 : z1 : z2]. Define charts (Ui,xi)
on RP2 as follows: for i = 0, 1, 2, let

Ui = {[z0 : z1 : z2] ∈ RP2 | zi 6= 0},

and define maps xi : Ui → R2 by

x0([z0 : z1 : z2]) =

(
z1
z0
,
z2
z0

)
,

x1([z0 : z1 : z2]) =

(
z0
z1
,
z2
z1

)
,

x2([z0 : z1 : z2]) =

(
z0
z2
,
z1
z2

)
.

(a) Describe the open sets V1 = x1(U1 ∩ U2) and V2 = x2(U1 ∩ U2) ⊂ R2, and compute the
transition function

x2 ◦ (x1)
−1 : V1 → V2

in terms of the standard coordinates (x1, x2) on V1 ⊂ R2.

(b) Let (TUi, Txi) denote the natural charts on the tangent bundle T (RP2). Let

Ṽ1 = Tx1(TU1 ∩ TU2), Ṽ2 = Tx2(TU1 ∩ TU2) ⊂ R4,

and compute the transition function

Tx2 ◦ (Tx1)
−1 : Ṽ1 → Ṽ2

in terms of the standard coordinates (x1, x2, v1, v2) on Ṽ1 ⊂ R4.


