DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO BOULDER Topology/Geometry Preliminary Examination

August 2013

The six problems have equal points. Please do all of them.

- 1. Suppose C_k is a nested sequence of closed subsets of a compact space X; that is, $C_{k+1} \subset C_k$ for each $k \in \mathbb{N}$. Let $C = \bigcap_{k=1}^{\infty} C_k$. If U is an open set such that $C \subset U$, show that $C_k \subset U$ for some k.
- 2. Let \mathbb{T}^2 denote the quotient space $\mathbb{R}^2/\mathbb{Z}^2$, and let M denote the quotient of \mathbb{T}^2 by the relation $(x, y) \equiv (-x, -y)$.
 - (a) Is the quotient $Q \colon \mathbb{T}^2 \to M$ a covering map?
 - (b) Express M as a quotient of a polygon with sides identified.
 - (c) What is the fundamental group of M?
- 3. State and prove Brouwer's Fixed Point Theorem for the closed unit disc D^2 .
- 4. Let M be a C^{∞} manifold.
 - (a) Define *orientability* of M.
 - (b) Construct coordinate charts for the tangent bundle TM.
 - (c) Show that the tangent bundle TM of a smooth manifold M is always orientable, even if M itself is not.
- 5. Let $f \colon \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x, y) = x^3 + xy + y^3$.
 - (a) Show that $f^{-1}(1)$ is a smooth submanifold of \mathbb{R}^2 .
 - (b) Show that $f^{-1}(0)$ is not a smooth submanifold. (Hint: if (x(t), y(t)) is a curve in $f^{-1}(0)$ with x(0) = 0 and y(0) = 0, what is the condition on x'(0) and y'(0)?) In fact you can show that $f^{-1}(0)$ is not even a topological submanifold.
- 6. Let M be a compact, connected, and orientable smooth manifold of dimension 6. Let α and β be two 2-forms on M. Show that there is a point of M where $d\alpha \wedge d\beta = 0$. Hint: integrate.