RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS!

Geometry/Topology

Ph.D. Preliminary Exam Department of Mathematics University of Colorado Boulder

August, 2012

INSTRUCTIONS:

- 1. Answer each of the six questions on a separate page. Turn in a page for each problem even if you cannot do the problem.
- 2. Label each answer sheet with the problem number.
- 3. Put your number, not your name, in the upper right hand corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the graduate secretary as to which number you have chosen.

Problem 1. Let X be a topological space, ~ an equivalence relation on X, and $\pi : X \to X/\sim$ the canonical projection. Prove the following claims:

- (a) X/\sim is a T_1 -space, if and only if each equivalence class is closed in X.
- (b) If X/\sim is Hausdorff, then \sim is closed in $X\times X$.
- (c) If the canonical projection is open, then X/\sim is Hausdorff, if and only if \sim is closed in $X \times X$.

Problem 2. Let T_1 and T_2 be tori and J_1 and J_2 be homotopically trivial simple closed curves on T_1 and T_2 respectively. Let X be the quotient space obtained by identifying J_1 and J_2 by a homeomorphism. Use the Seifert-van Kampen Theorem to compute the fundamental group of X.

Problem 3. Let $f: X \to Y$ be a local diffeomorphism between connected, oriented manifolds, with X compact. Prove that f either preserves orientation at every $x \in X$ or reverses orientation at every $x \in X$.

Problem 4. Recall that a manifold is called *parallelizable*, if its tangent bundle is trivial. Determine for which $n \in \{1, 2, 3\}$ the sphere S^n is parallelizable. Prove your claim.

Problem 5. Let $p : \mathbb{R}^2 \to T^2 = \mathbb{R}^2/\mathbb{Z}^2$ be the quotient map. Let x and y be the standard coordinates on \mathbb{R}^2 and consider the 1-form

$$\omega = 2\cos^2(\pi x)dx + dy$$

on \mathbb{R}^2 . Then ω descends to a 1-form η on T^2 ; i.e. there exists a 1-form η on T^2 such that $p^*\eta = \omega$. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be the map given by f(a, b) = (3a + 2b, a - b). Then f descends to a map $\overline{f} : T^2 \to T^2$; i.e. there is a commutative diagram:

$$\begin{array}{ccc} \mathbb{R}^2 & \stackrel{f}{\longrightarrow} & \mathbb{R}^2 \\ p & & p \\ T^2 & \stackrel{\bar{f}}{\longrightarrow} & T^2 \end{array}$$

(a) Show that ω is closed and exact.

- (b) Let $\gamma: [0,1] \to \mathbb{R}^2$ be the path given by $\gamma(a) = (a,0)$. Compute $\int_{\gamma} f^* \omega$.
- (c) Show that η is closed on T^2 .
- (d) Show that $\bar{f}^*\eta$ is closed, but *not* exact on T^2 .

Problem 6. Let X be a C^{∞} surface. Suppose that X is covered by two open sets U and V with corresponding charts

$$\varphi_U: U \to \mathbb{R}^2 \quad \text{and} \quad \varphi_V: V \to \mathbb{R}^2,$$

which are surjective. Assume further that the transition function

$$\tau_{VU}:\phi_U(U\cap V)\to\phi_V(U\cap V)$$

is given by

$$\tau_{VU}(a_1, a_2) = \left(\frac{1}{a_1}, \frac{1}{a_2}\right).$$

(a) Let x_1, x_2 be the coordinate functions on \mathbb{R}^2 . The tensor

$$\frac{dx_1 \otimes dx_1}{(1+x_1^2)^2} + \frac{dx_2 \otimes dx_2}{(1+x_2^2)^2}$$

on \mathbb{R}^2 determines a Riemannian metric on V (via φ_V). Show there is a Riemannian metric g on X extending this metric on V.

- (b) Let ∇ be the Levi-Civita connection on X with respect to g. The vector fields $\partial/\partial x_1$ and $\partial/\partial x_2$ provide a frame for the tangent bundle on U. Compute ∇ explicitly in terms of this frame (i.e. compute $\nabla_{\partial/\partial x_i}(\partial/\partial x_i)$ for $1 \leq i, j \leq 2$).
- (c) Compute the curvature tensor R associated to ∇ explicitly on U in terms of the frame ∂/∂x₁ and ∂/∂x₂.
 Hint: For given vector fields χ₁, χ₂, χ₃ express the vector field R(χ₁, χ₂)χ₃ in terms of χ₁, χ₂, χ₃, ∇ and the Lie bracket [,].