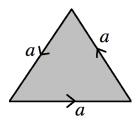
GEOMETRY/TOPOLOGY PRELIMINARY EXAM AUGUST 2011

- 1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a continuous function. Define an equivalence relation on \mathbb{R}^2 by $x \sim y$ if and only if f(x) = f(y). Let X be the quotient space.
 - (a) Show that X is always Hausdorff.
 - (b) Must X be connected?
- 2. Let D^2 denote the unit disc in \mathbb{R}^2 with the unit circle S^1 its boundary. If $f: D^2 \to D^2$ is a homeomorphism, show that the restriction $f|_{S^1}$ is a homeomorphism onto S^1 . (Hint: one way to do this is to assume it is not and obtain a contradiction by considering fundamental groups.)
- 3. Consider the quotient space Q formed by identifying the sides of a triangle T as in the diagram.



- (a) Is Q a topological manifold? (An intuitive explanation is sufficient.)
- (b) Use the Seifert-van Kampen theorem to compute the fundamental group of Q.
- 4. A contact form on a three-dimensional manifold M is a C^{∞} 1-form on M such that $\alpha \wedge d\alpha$ is nowhere zero. A Reeb field for a contact form is a C^{∞} vector field X on M such that $\alpha(X) = 1$ everywhere and $d\alpha(X, Y) = 0$ everywhere for every C^{∞} vector field Y on M.
 - (a) Prove that $\alpha = (\cos z) dx + (\sin z) dy$ is a contact form on $\mathbb{T}^3 = (\mathbb{R}/2\pi\mathbb{Z})^3$.
 - (b) Show that there is a unique Reeb field for this contact form, and compute it.

(c) Describe the flow of this Reeb field. Is it periodic?

- 5. Let *a* and *b* be real numbers with a > 0. Consider the set M_{ab} of 2×2 matrices $A = \begin{pmatrix} w & x \\ y & z \end{pmatrix}$ satisfying $w^2 + x^2 + y^2 + z^2 = a$ and wz xy = b. Show that if $a \neq 2|b|$, then M_{ab} is a smooth submanifold of \mathbb{R}^4 .
- 6. Suppose M is an annulus $[a, b] \times S^1$, for numbers b > a > 0, with C^{∞} Riemannian metric given in polar coordinates $r \in [a, b]$ and $\theta \in S^1$ by $ds^2 = dr^2 + \varphi(r)^2 d\theta^2$ for some function φ . Let ∇ denote the usual Levi-Civita covariant derivative, and let R denote the radial vector field $R = r \frac{\partial}{\partial r}$.
 - (a) Find all vector fields of the form $V = f(r) \frac{\partial}{\partial r} + g(r) \frac{\partial}{\partial \theta}$ satisfying $\nabla_R V = 0$ everywhere on M.
 - (b) How does your answer change if M is a disc rather than an annulus, with the same metric? (Hint: what does $\varphi(r)$ look like near the origin r = 0?)