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1. If (X,Σ, µ) is a measure space and if f is µ integrable, show that for
every ε > 0 there is E ∈ Σ such that µ(E) <∞ and∫

X\E
|f | dµ < ε

2. Let {fn} be a sequence of measurable functions on [0, 1], and sup-

pose that for every a > 0 the infinite series
∞∑
n=1

µ ({x ∈ [0, 1] | |fn(x)| > a})

converges; here µ is the Lebesgue measure. Prove that

lim
n→∞

fn(x) = 0

for almost every x ∈ [0, 1].
3. Let f : [a, b]→ R be a continuous function.

(a) Let h > 0. Show that the function gh(x) = sup0<t<h
f(x+t)−f(x)

t
is

measurable;
(b) Show that g(x) = lim supt→0+

f(x+t)−f(x)
t

is measurable;
(c) Prove that the set of points where f is differentiable is measurable.
4. Let f be integrable on the real line with respect to the Lebesgue

measure. Evaluate

lim
n→∞

∫ ∞
−∞

f(x− n)

(
x

1 + |x|

)
dx.

Justify all steps.
5. Let f be a non-negative measurable function on (−∞,∞) such that

f(x) < ∞ µ-almost everywhere; here µ is the Lebesgue measure. Prove or
give a counterexample to each of the following:

a) For every N there exists a compact K such that µ(K) > N and f is
integrable over K

b) There exist a < b such that f is integrable over [a, b].
6. A C∞ function f : R→ R satisfies the condition

for each x ∈ R there exists nx ∈ N such that f (nx)(x) = 0.

Prove that f is a polynomial.
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