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1. Answer each question on a separate page. Turn in a page for each problem even if you
cannot do the problem.
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1. Let X be a metric space, A ⊂ X a compact subset and p ∈ X \ A a point of X not
in A. Prove that there exist disjoint open sets O1 and O2 in X such that A ⊂ O1

and p ∈ O2.

2. Let f(x) be a continuous real-valued function on [0, 1] which satisfies∫ 1

0
f(x)xndx = 0 for n = 0, 1, 2, . . . .

Prove that f(x) is identically 0.

Hint: You may find the (Stone-)Weierstrass theorem useful.

3. Let f , g be nonnegative, measurable functions on [0, 1] such that∫ 1

0
f(x)dx = 2,

∫ 1

0
g(x)dx = 1,

∫ 1

0
f(x)2dx = 5.

Let E = {x ∈ [0, 1] | f(x) ≥ g(x)}. Show that m(E) ≥ 1/5 (m is the Lebesgue
measure).

4. Assume that f : [0, 1]→ R is an absolutely continuous function with
∫ 1
0 f(x)dx = 0.

Prove for any y ∈ [0, 1] that∣∣∣∣∫ 1

0
(y − x)f ′(x)dx

∣∣∣∣ ≤ sup
0≤x≤1

|f(x)|

5. Let f ∈ L3[−1, 1]. Show that ∫ 1

−1

|f(x)|√
|x|

dx <∞

6. (a) Show that for x > 0 the limit lim
R→∞

∫ R

0

cos t

x + t
dt exists.

(b) Define for x > 0

f(x) = lim
R→∞

∫ R

0

cos t

x + t
dt.

Show that f(x) is continuous on (0,∞).


