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Analysis prelim questions, 2012/2013 December 17, 2012

1. Let f ∈ L∞([0, 1]), f 6= 0. Show that the limit

lim
p→∞

∫ 1

0
|f |p+1dx∫ 1

0
|f |pdx

.

exists and compute it.
2. Is it true that for any f ∈ L1([0, 1]) there exists [a, b] ⊂ [0, 1], a < b,

such that f ∈ L2([a, b])?
3. Let E ⊂ [0, 1] denote the set of all numbers x that have some decimal

expansion x = 0.a1a2a3... with an an 6= 2 for all n. Show that E is
a measurable set, and calculate its measure.

4. Show that if An ⊂ [0, 1] and Lebesgue-measurable, with measure at
least c > 0 for each n ≥ 1, then the set of points which belong to
infinitely many sets is measurable and its measure is at least c.

5. Construct Lebesgue-measurable real valued functions on [a, b] so
that they converge to zero pointwise but there is no null set N
in [a, b] such that the convergence is uniform outside of N . (I.e.
Egoroff’s Theorem is sharp.)

6. Prove that for any function f : R → R, the set of its continuity
points is Gδ.
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