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1. Let {fn} be a sequence of measurable real-valued functions on [0, 1].
Show that the set of x for which lim

n→∞
fn(x) exists is measurable.

2. Let {fn} be a sequence of measurable functions on a [0, 1], and suppose

that
∞∑

n=1
m ({x ∈ [0, 1] | fn(x) > 1}) < ∞ where m is Lebesgue measure on

[0,1]. Prove that lim sup fn(x) ≤ 1 for almost every x ∈ [0, 1].

3.

(a) Let f be a real-valued Lebesgue measurable function defined on [0, 1].
Give the definition of the essential supremum of f, ‖f‖∞, and prove
that if f and g are real-valued functions defined on [0, 1] whose essential
supremums are finite, then f + g is defined for almost all x ∈ [0, 1].

(b) Let f : [0, 1] → R be a Lebesgue measurable function with ‖f‖∞ < ∞.
Prove that

‖f‖∞ = sup

{
|
∫

[0,1]
f(x)g(x)dx| : g ∈ L1[0, 1], ‖g‖1 = 1

}
.

4. Suppose that {fn}∞n=1 ∈ L∞[a, b], where −∞ < a < b < ∞. Let
f ∈ L1[a, b].

(a) Show that for all n ≥ 1, fn ∈ L1[a, b].

(b) If fn → f in L1[a, b], and supn≥1‖fn‖∞ < ∞, prove that f ∈ L∞[a, b].

(c) Assuming part (b), prove that for all p ∈ (1,∞), fn → f ∈ Lp[a, b].



5.

(a) Prove that for every x > 0, 1
x =

∫∞
0 e−xtdt.

(b) Prove that

∂

∂x

[
e−xt(−t sinx− cos x)

t2 + 1

]
= e−xt sinx.

(c) Using parts (a) and (b), prove that

lim
A→∞

∫ A

0

sinx

x
dx =

π

2
.

State any theorems that you are using in your proof.

6. Let fn be a sequence of real valued C1 functions on [0, 1] such that, for
all n,

|f ′n(x)| ≤ 1√
x

for x > 0,∫ 1

0
fn(x)dx = 0.

Prove that the sequence has a subsequence that converges uniformly on
[0, 1].


