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1. Prove or disprove the following statement: If the real-valued function f is
continuous on [a,∞) and

∫ ∞
a f(x) dx is convergent, then limx→∞ f(x) = 0.

2. Let (X, d) be a separable metric space. Suppose S ⊂ X. Show that
there exists a countable set F ⊂ S such that F is dense in S, i.e., such that
S ⊂ F .

3. Let 1 < p < 2.

(a) Give an example of a function f ∈ L1(R) such that f /∈ Lp(R) and a
function g ∈ L2(R) such that g /∈ Lp(R).

(b) Prove that if f ∈ L1(R) ∩ L2(R), then f ∈ Lp(R).

4. Let f be continuously differentiable on [a, b] with f(a) = 0. Let M :=
supa≤x≤b |f(x)|. Show that

M2 ≤ (b − a)
∫ b

a
f ′2(x) dx.

5. Let f ∈ C2
(
[−1, 1]

)
, that is, suppose f is twice continuously differentiable

on [−1, 1]. Prove that
∣∣f ′(0)

∣∣2 ≤ 4
∥∥f

∥∥
∞ ·

(
‖f ′′‖∞ + ‖f‖∞

)
,

where ‖f‖∞ = supt∈[−1,1] |f(x)| denotes the sup-norm.

6.

(a) State, without proof, Tonelli’s and Fubini’s Theorems.

(b) Prove that if f ∈ L1[0, 1] and a > 0, then the integral

Fa(x) =
∫ x

0
(x − t)a−1f(t)dt

exists for almost every x in [0, 1] and Fa ∈ L1[0, 1].


