Problem 1. f is a non-negative real-valued function that belongs to the Lebesgue class $L^n(0,1)$ for every positive integer n. Prove that either

$$\int_0^1 f(x)^n dx \to \infty \quad as \ n \to \infty,$$

or

$$\lim_{n \to \infty} \int_0^1 f(x)^n dx$$

exists finitely.

Problem 2. Prove, from first principles (without appealing to a standard theorem) that with the standard topology on the reals:

- a) Every open set is the union of a sequence of closed sets.
- b) Every closed set is the intersection of a sequence of open sets.

Problem 3. Let $(H, (\cdot, \cdot))$ be a Hilbert space. Recall $u_n \to u$ weakly in H if $(u_n, v) \to (u, v)$ for all $v \in H$. Show if $u_n \to u$ weakly, then $u_n \to u$ (strongly) in H if and only if $||u_n|| \to ||u||$.

Problem 4. Let C and α be two fixed positive real numbers. Define K to be the set of all real-valued functions on [0,1] satisfying

$$|f(x) - f(y)| \le C|x - y|^{\alpha}, \quad x, y \in [0, 1].$$

Is K equicontinuous?

Then, with respect to the L^{∞} norm, is K

- Closed?
- Bounded?
- Compact?

Problem 5. The real-valued function f belongs to the Lebesgue class $L^2(0,1)$ and satisfies

$$\int_0^1 f(x)dx = 0.$$

Prove that

$$\left| \int_{0}^{1} x f(x) dx \right| \le \frac{1}{2\sqrt{3}} \left\{ \int_{0}^{1} \left| f(x)^{2} \right| dx \right\}^{\frac{1}{2}}$$

Hint: Consider $\int_0^1 |f(x) - \alpha - \beta x|^2 dx$, α , β real.

Problem 6. Suppose K(x, y) is measurable on $\mathbb{R}^n \times \mathbb{R}^n$ and there is some C > 0 such that

$$\int |K(x,y)| \, dx \le C, \quad \text{for a.e.} \quad y \in \mathbb{R}^n,$$
$$\int |K(x,y)| \, dy \le C, \quad \text{for a.e.} \quad x \in \mathbb{R}^n.$$

Let

$$F(x) = \int K(x, y) f(y) dy,$$

where $f \in L^p(\mathbb{R}^n), 1 \leq p \leq \infty$. Prove $F \in L^p(\mathbb{R}^n)$. Hint: Use Hölder.