
RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS!

Analysis

Ph.D.
Preliminary Exam

August, 2016

INSTRUCTIONS:

1. Answer each of the six questions on a separate page. Turn in a page for each
problem even if you cannot do the problem.

2. Label each answer sheet with the problem number.

3. Put your number, not your name, in the upper right hand corner of
each page. If you have not received a number, please choose one
(1234 for instance) and notify the graduate secretary as to which number
you have chosen.



1. Let m be Lebesgue measure on R, and let E ⊂ R have finite Lebesgue measure. If
Er = {x ∈ E : |x| > r}, prove that m(Er)→ 0 as r →∞.

2. Let fn : [0, 1]→ R be a sequence of measurable functions. Suppose that

(i)
∫ 1
0 |fn|

2 ≤ 1 for n = 1, 2, . . ., and

(ii) fn → 0 almost everywhere.

Show that

lim
n→∞

∫ 1

0
fn = 0.

3. Let f and g be real-valued integrable functions on a measure space (X,B, µ), and
define

Ft = {x ∈ X : f(x) > t}, Gt = {x ∈ X : g(x) > t}.

Prove that ∫
|f − g|dµ =

∫ ∞
−∞

µ ((Ft \Gt) ∪ (Gt \ Ft)) dt.

Hint: Rewrite the right-hand side as a double integral.

4. Let f ∈ L1(R) be a function satisfying
∫
R |f(x)|dx = 1.

(a) Prove that

lim
|t|→∞

∫
R
f(x) cos(tx)dx = 0.

Justify your reasoning.

(b) Compute

lim
t→+∞

∫
R
|f(x) sin2(tx)|dx.

Justify your reasoning.

5. (a) Let f : [0, 1] → R ∪ {±∞} be in Ls([0, 1]), where s ∈ (1,∞). Suppose that
r ∈ [1,∞) and r < s. Prove that f ∈ Lr([0, 1]).

(b) Prove that L6(R) ∩ L3(R) ⊂ L4(R), and moreover show that this containment
is proper. Explain your reasoning.



6. Let C([0, 1]) be the Banach space of all complex-valued continuous functions on [0, 1]
with norm

‖f‖ = sup
x∈[0,1]

|f(x)|.

(a) If we define B by
B = {f ∈ C([0, 1]) : ‖f‖ ≤ 1},

show that B is a closed subset of C([0, 1]) that is not compact.

(b) Let H : [0, 1]× [0, 1]→ C be a continuous function, and for f ∈ C([0, 1]) define

S(f)(x) =

∫ 1

0
H(x, y)f(y)dy.

Prove that if f ∈ C([0, 1]) then S(f) ∈ C([0, 1]), and also prove that the closure
of {S(f) : f ∈ B} is compact in C([0, 1]).



Solutions:

1. Let (rn) be an increasing sequence of positive real numbers tending to infinity. It
suffices to show

lim
n→∞

m(Ern) = 0.

(Observe that the limit on the left-hand side always exists sincem(Ern) is a decreasing
sequence.) Let Fn = E \ Ern . Then F1 ⊆ F2 ⊆ · · · and m(Fn) = m(E) −m(Ern).
Thus, by continuity from below,

lim
n→∞

m(Fn) = m(E)

since ∩nErn = ∅. On the other hand,

lim
n→∞

m(Fn) = m(E)− lim
n→∞

m(Ern)

yielding the desired conclusion. �

2. Let M > 0. Then ∫ 1

0
fn =

∫ 1

0
fnχ{|fn|≤M} +

∫ 1

0
fnχ{|fn|>M},

where χ{|fn|≤M} and χ{|fn|>M} are indicator functions. Notice that the sequence of
functions (fnχ{|fn|≤M}) is uniformly bounded. So, by the dominated convergence
theorem,

lim
n→∞

∫ 1

0
fnχ{|fn|≤M} = 0.

For the second integral,∫ 1

0
|fn|χ{|fn|>M} ≤

1

M

∫ 1

0
|fn|2 ≤

1

M
,

which can be made arbitrarily small by taking M sufficiently large. �

3. Letting χt be the indicator function of the set (Ft \Gt)∪ (Gt \Ft) allows us to write∫ ∞
−∞

µ ((Ft \Gt) ∪ (Gt \ Ft)) dt =

∫ ∞
−∞

∫
X
χt(x)dµ(x)dt.

Applying Fubini’s theorem gives the desired conclusion. �



4. (a) This is just a special case of the Riemann–Lebesgue Lemma, but we include
the proof. We consider the case where we have g = χ[a,b] ∈ L1(R), for a finite
subinterval [a, b] ⊂ R. Then

lim
|t|→∞

∫
R
g(x) cos txdx = lim

|t|→∞

∫ b

a
cos txdx

lim
|t|→∞

[
sin tx

t
]x=bx=a = lim

|t|→∞
[
sin tb− sin ta

t
].

We now note that

|[ sin tb− sin ta

t
]| ≤ 2

|t|
so that

0 ≤ lim sup
|t|→∞

|[ sin tb− sin ta

t
]| ≤ lim

|t|→∞

2

|t|
= 0.

Therefore

lim
|t|→∞

∫
R
g(x) cos txdx = 0.

Now let [ai, bi] ⊂ R, 1 ≤ i ≤ n, be a collection of finite intervals in R, and let
{αi}I = 1n ⊂ C. Let gi = χ[ai,bi] ∈ L1(R). By properties of the integral and of
limits we get:

lim
|t|→∞

∫
R

[
n∑
i=1

αigi(x)] cos txdx

= lim
|t|→∞

n∑
i=1

αi

∫
R
gi(x)dx

=
n∑
i=1

αi[ lim
|t|→∞

∫
R
gi(x)dx] =

n∑
i=1

αi · 0 = 0.

We have thus shown that if ψ ∈ L1(R) is a step function,

lim
|t|→∞

∫
R
ψ(x) cos txdx = 0.

But step functions are dense in L1(R) in the L1 norm, so that given f ∈ L1(R)
with ‖f‖1 = 1, there is a sequence of step functions {psik}∞k=1 with

lim
k→∞

∫
R
|f(x)− ψk(x)|dx = 0.



Given ε > 0, find K > 0 such that for all k ≥ K,∫
R
|f(x)− ψk(x)|dx < ε

2
.

In particular, ∫
R
|f(x)− ψK(x)|dx < ε

2
.

Note ψK is a step function, so there exists N > 0 such that if |t| > N,

|
∫
R
ψK(x) cos txdx| < ε

2
.

So, for |t| > N,

|
∫
R
f(x) cos txdx; = |

∫
R

[f(x)− ψK(x) + ψK(x)] cos txdx|

= |
∫
R

[f(x)− ψK(x)] cos txdx+

∫
R
ψK(x) cos txdx|

≤ |
∫
R

[f(x)− ψK(x)] cos txdx|+ |
∫
R
ψK(x) cos txdx|

≤
∫
R
|(f(x)− ψK(x)) cos tx|dx+ |

∫
R
ψK(x) cos txdx|

≤
∫
R
|(f(x)− ψK(x))|dx+ +|

∫
R
ψK(x) cos txdx|

<
ε

2
+
ε

2
= ε.

We thus have shown that

lim
|t|→∞

∫
R
f(x) cos txdx = 0,

as desired. �

(b) We use the following double-angle formula in trigonometry:

sin2 tx =
1− cos [2tx]

2
.

Therefore since sintx | ≥ 0,

lim
t→+∞

∫
R
|f(x) sin2 tx|dx = lim

t→+∞

∫
R
|f(x)| sin2 txdx



= lim
t→+∞

∫
R
|f(x)|1− cos [2tx]

2
dx =

∫
R
|f(x)|1

2
dx− lim

t→+∞

∫
R
|f(x)|cos [2tx]

2
dx

1

2
− 1

2
· lim
t→+∞

∫
R
|f(x)| cos [2tx]dx

(the first “1
2” occurring since we are told that ‖f‖1 = 1)

=
1

2
− 0

(by part (a), since |f | ∈ L1(R)). Therefore, we have proved that

lim
t→+∞

∫
R
|f(x) sin2 tx|dx =

1

2
.

�

5. (a) Since f ∈ Ls([0, 1]), we have∫
[0,1]
|f(x)|sdx =

∫
[0,1]

(|f(x)|
s
r )rdx <∞.

It follows that g(x) = |f(x)|r is an element of L
s
r ([0, 1]). We now apply Hölder’s

inequality to the product |f |r · 1 = |f |r with respect to the conjugate exponents
s
r and 1

1− r
s

= s
s−r = p′ to obtain∫

[0,1]
|f(x)|rdx =

∫
[0,1]
|f(x)|r · 1 dx

≤ [

∫
[0,1]

(|f(x)|r)
s
r dx]

r
s · [

∫
[0,1]

(1)
s

s−r dx]
s−r
s

= [

∫
[0,1]
|f(x)|sdx]

r
s · 1 < ∞.

Thus f ∈ Lr([0, 1]). �

(b) We first show that
‖f‖4 ≤ max{‖f‖3, ‖f‖6}.

We write 4 as a convex combination of 3 and 6 :

4 = (1− 1

3
) · 3 +

1

3
· 6.

So
|f(x)|4 = |f(x)|

2
3
·3+ 1

3
·6 = |f(x)|2 · |f(x)|2.



We now apply Hölder’s inequality with p = 3
2 , q = 3 to obtain that∫

R
|f(x)|4dx =

∫
R
|f(x)|2 · |f(x)|2dx

≤ [

∫
R

[|f(x)|2]
3
2dx]

2
3 · [

∫
R

[|f(x)|2]3dx]
1
3

= [

∫
R
|f(x)|3dx]

2
3 · [

∫
R
|f(x)|6dx]

1
3

= (‖f‖3)2 · (‖f‖6)2.

It follows that

‖f‖4 = [

∫
R
|f(x)|4dx]

1
2 ≤ (‖f‖3)

1
2 · (‖f‖6)

1
2 .

Let M = max{‖f‖3, ‖f‖6}. We then obtain

‖f‖4 ≤ (‖f‖3)
1
2 · (‖f‖6)

1
2 ≤ M

1
2 ·M

1
2 = M.

Hence ‖f‖4 ≤ max{‖f‖3, ‖f‖6}, as we desired to show. Now suppose f ∈
L6(R)∩L3(R). Then ‖f‖6 <∞ and ‖f‖3 <∞. Hence M = max{‖f‖3, ‖f‖6} <
∞. Since ‖f‖4 ≤M, we get the desired result, that ‖f‖4 <∞, so that f ∈ L4(R).

Finally, to show the containment is proper, consider the function

f(x) = χ(0,1)(x)
1

x2/9

We note that

|f(x)|4 = χ(0,1)(x)[
1

x2/9
]4 = χ(0,1)(x)

1

x8/9

so that ∫
R
|f(x)|4dx =

∫
[0,1]

1

x8/9
<∞.

Therefore f ∈ L4(R). On the other hand,

|f(x)|6 = χ(0,1)(x)
1

x12/9

so that ∫
R
|f(x)|6dx =

∫
[0,1]

1

x12/9
=∞.

Therefore f /∈ L6(R), so that f /∈ L6(R)∩L3(R). (The exponent 2/9 was chosen
since 1/6 < 2/9 < 1/4.)

�



6. (a) We first show that B is closed. Recall the sup norm on C([0, 1]) is a norm and
the norm is continuous since we have

|‖f‖ − ‖g‖| ≤ ‖f − g‖, ∀f, g ∈ C([0, 1]),

by standard properties of norm. Therefore if {gn} is a Cauchy sequence in
B. by completeness of C([0, 1]) this sequence will converge in norm to some
g ∈ C([0, 1]), Since the norm is continuous,

lim
n→∞

‖gn‖ = ‖g‖.

But for all n ∈ N, gn ∈ B, so that ‖gn‖ ≤ 1, ∀n ∈ N. Therefore ‖g‖ ≤ 1, so
that g ∈ B, and B is closed.

Now consider the sequence of functions in B given by {fn(x) = xn}∞n=1. We
calculate the pointwise limit of the fn :

lim
n→∞

fn(x) =

{
0 if 0 ≤ x < 1,

1 if x = 1.

We see that the pointwise limit function is discontinuous at x = 1. Therefore,
the sequence {fn} does not have a subsequence that converges uniformly, so
that {fn} is a sequence in B that does not have any convergent subsequence in
norm, so B cannot be compact. �

(b) Fix f ∈ B. We first show that S(f) is continuous. Let ε > 0 be fixed. We
note that since H is continuous on the compact set [0, 1]× [0, 1], it is uniformly
continuous there, so that there exists δ > 0 such that whenever x1, x2, y1, y2 ∈
[0, 1] and |x1 − x2| < δ and |y1 − y2| < δ, |H(x1, y1) − H(x2, y2)| < ε

2 . So if
x1, x2 ∈ [0, 1] and |x1 − x2| < δ,

|S(f)(x1)− S(f)(x2)| = |
∫ 1

0
H(x1, y)f(y)dy −

∫ 1

0
H(x2, y)f(y)dy|

= |
∫ 1

0
(H(x1, y)−H(x2, y))f(y)dy| ≤

∫ 1

0
|H(x1, y)−H(x2, y)||f(y)|dy

≤
∫ 1

0

ε

2
· 1dy =

ε

2
< ε.

(We recall that f ∈ B so that supx∈[0,1] |f(x)| = ‖f‖ ≤ 1.) Therefore S(f) is
uniformly continuous on [0, 1] so that S(f) ∈ C([0, 1]). The above argument
also shows that the set {S(f) : f ∈ B} is equicontinuous, because the value δ
chosen above depends only on ε and H and is independent of f ∈ B. Since H



is continuous on the compact set [0, 1] × [0, 1] it is bounded on that set, and
therefore there exists M > 0 such that

|H(x, y)| ≤M ∀ (x, y) ∈ [0, 1]× [0, 1].

It follows that for f ∈ B, and x ∈ [0, 1],

|S(f)(x)| = |
∫ 1

0
H(x, y)f(y)dy| ≤

∫ 1

0
|H(x, y)||f(y)|dy ≤

∫ 1

0
M ·1dy = M.

Thus {S(f) : f ∈ B} is equicontinuous and pointwise (in fact uniformly)
bounded on [0, 1], so that by the Arzela–Ascoli Theorem, the closure of {S(f) :
f ∈ B} is compact in C([0, 1]). �


