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Q.1 Suppose that f : [0, 1]→ R is continuous. Prove that

lim
n→∞

∫ 1

0
f(xn)dx

exists and evaluate the limit. Does the limit always exist if f is only
assumed to be Lebesgue integrable?

Q.2 Assume that a Lebesgue measurable set E is contained in the interval
[a, b] for some 0 < a < b < ∞. Let δ > 1. If the sets E and δE (the
elements of E each multiplied by δ) are disjoint, prove that the measure
of E is at most b

2 log (bδ/a).

Q.3 (i) Find a sequence of continuous functions on [0, 1] converging point-
wise but not uniformly.

(ii) Prove that the space C([0, 1]) of continuous functions on [0, 1] is
not complete in the L1 metric d(f, g) =

∫ 1
0 |f(x)− g(x)|dx.

Q.4 Let {φn} be a sequence of continuous real-valued functions defined on
a compact metric space X. For each x ∈ X, suppose that the sequence
of values {φn(x)} is non-decreasing and bounded above. Define

φ(x) = lim
n→∞

φn(x).

If φ is continuous, prove that the sequence {φn} converges uniformly to
φ.

Q.5 Let M be a bounded subset of C([a, b]), the set of continuous functions
on [a, b] equipped with the sup norm. Set

A =

{
F : [a, b]→ R : F (x) =

∫ x

a
f(t)dt for some f ∈M

}
.

Show that the closure of A is a compact subset of C([a, b]).

Q.6 Let f be a Lebesgue measurable real-valued function on the interval
(0, 1). For n = 1, 2, . . ., assume that the integrals∫ 1

0
x (f(x))n dx



exist and have the same non-zero value. Prove that f(x) = 1 on a set
of positive measure and is otherwise almost everywhere zero. [Hint:
First show that f is essentially bounded.]


