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Q.1 Prove the following statement or provide a counterexample to the fol-
lowing statement: There exists an open subset, E, of the closed unit
interval on the real line, [0, 1], with the following two properties:

(a) Lebesgue measure of {E ∩ (a, b)} > 0 for all non-empty open
subintervals, (a, b), of [0, 1] with 0 < a < b < 1;

(b) Lebesgue measure of E < 1.

Q.2 Let f ∈ Lp(−∞,∞) where 1 ≤ p ≤ ∞. Show that the function

F (t) =

∫ t

0
f(s) ds

is well defined and continuous.

Q.3 Let Hk(t), k = 0, 1, 2, . . . be a sequence of functions on [0, 1] defined
as follows: H0(t) ≡ 1 and, if 2n ≤ k < 2n+1 where n is a nonnegative
integer, then

Hk(t) =


2n/2 if k−2n

2n ≤ t < k−2n+0.5
2n

−2n/2 if k−2n+0.5
2n ≤ t < k−2n+1

2n

0 otherwise

Show that, for every function f in the Hilbert space L2[0, 1],

lim
k→∞

∫ 1

0
f(t)Hk(t) dt = 0

Q.4 Consider the expression ∫ ∞
0

sin x

xα
dx.

Does there exist an α > 0 such that the given integral expression exists
as an improper Riemann integral but does not exist as a Lebesgue
integral? Prove your answer.

Q.5 Let Ak be a sequence of measurable subsets of [0, 1] such that, for
every finite set of indices i1 < i2 < · · · < ik,

m(Ai1 ∩Ai2 ∩ · · · ∩Aik) = m(Ai1)m(Ai2) . . .m(Aik)

where m stands for the Lebesgue measure.

(a) Show that the sequence Bk = [0, 1] \ Ak has the same property.
(Hint: Show that, if the property holds for the sequence Ak,
then it still holds if exactly one of the sets Ak is replaced by the
corresponding Bk).

(b) Suppose in addition that the series
∑
m(Ak) diverges. Show that

m

( ∞⋃
k=1

Ak

)
= 1



Q.6 Let µs be Lebesgue measure on S = [0, 1]; let µt be the counting
measure on S, i.e., µt(B) = the number of elements of B, for any
finite B ⊂ S. Let D be the diagonal, D = {(s, t) : s = t} in S×S, and
f the characteristic function of D.

(a) Show that, for any s, ∫
S
f(s, t) dµt = 1,

(b) Show that, for any t, ∫
S
f(s, t) dµs = 0,

(c) Show that ∫
S×S

f(s, t) dµ,

where µ = µs ⊗ µt, does not exist (as a finite number).


