Department of Mathematics, University of Colorado Boulder Analysis Preliminary Examination

August 2013

The six problems have equal points. Please do all of them.

1. Prove the following "modified squeeze law:" Suppose we have real numbers a_n , $b_{m,n}$, and c_m such that

$$0 \le a_n \le b_{m,n} + c_m$$

for all m, n sufficiently large (say, greater than some fixed integer K). If

$$\lim_{m \to \infty} c_m = 0$$

and, for any fixed m,

 $\lim_{n \to \infty} b_{m,n} = 0,$

then

$$\lim_{n \to \infty} a_n = 0$$

2. Prove or disprove the following:

Let $f, g: \mathbb{R} \to \mathbb{R}$, and suppose the composite function $f \circ g$ is continuous everywhere. If $\lim_{u\to b} f(u) = c$ and $\lim_{x\to a} g(x) = b$ $(b, c \in \mathbb{R})$, then $\lim_{x\to a} f(g(x)) = c$.

3. The convolution, denoted f * g, of two functions $f, g: \mathbb{R} \to \mathbb{R}$ is defined by

$$f * g(x) = \int_{\mathbb{R}} f(x - y)g(y) \, dy,$$

for any $x \in \mathbb{R}$ such that the integral on the right exists (in the Lebesgue sense).

(a) Show that, if $f, g \in L^2(\mathbb{R})$, then f * g(x) exists for all x, that f * g is bounded on \mathbb{R} , and that

$$\sup_{x \in \mathbb{R}} |f * g(x)| \le ||f||_2 \cdot ||g||_2$$

(here, $|| \cdot ||_2$ denotes the norm on $L^2(\mathbb{R})$).

(b) Show that, if $f, g \in L^1(\mathbb{R})$, then f * g(x) exists for almost all x, that $f * g \in L^1(\mathbb{R})$, and that

 $||f * g||_1 \le ||f||_1 \cdot ||g||_1$

(here, $|| \cdot ||_1$ denotes the norm on $L^1(\mathbb{R})$).

4. The Fourier transform, denoted \widehat{f} , of a function $f \colon \mathbb{R} \to \mathbb{R}$ is defined by

$$\widehat{f}(s) = \int_{\mathbb{R}} f(x) e^{-2\pi i s x} dx,$$

for any $s \in \mathbb{R}$ such that the integral on the right exists (in the Lebesgue sense).

(a) Show that, if $f \in L^1(\mathbb{R})$, then $\widehat{f}(s)$ exists for all s, that \widehat{f} is bounded and continuous, and that

$$\sup_{s \in \mathbb{R}} |\widehat{f}(s)| \le ||f||_1$$

(here, $|| \cdot ||_1$ denotes the norm on $L^1(\mathbb{R})$).

(b) Show that, if $f, g \in L^1(\mathbb{R})$, then

$$\int_{\mathbb{R}} \widehat{f}(u)g(u)\,du = \int_{\mathbb{R}} f(v)\widehat{g}(v)\,dv.$$

- 5. Give an example of a subset of \mathbb{R} that is not a G_{δ} set. (Recall that a G_{δ} set in \mathbb{R} is a countable intersection of open subsets of \mathbb{R} .) Can such a set be countable? If so, give an example to show this. If not, explain why not.
- 6. Prove or disprove the following:

Let A be a measurable subset of \mathbb{R} . Let $I = A \cap [a, b]$, where [a, b] is a compact interval in \mathbb{R} , and let $f: I \to \mathbb{R}$. Assume f is continuous on I, in the sense that

$$\lim_{n \to \infty} x_n = x \Rightarrow \lim_{n \to \infty} f(x_n) = f(x),$$

for $x_n, x \in I$. Then f is bounded.