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1. Let {fn : n ∈ N} be a sequence of real-valued Lebesgue measurable
functions defined on [0, 1]. Suppose limn→∞ fn(x) = f(x) for almost all
x ∈ [0, 1].

(a) Is f necessarily Lebesgue measurable? If yes, prove it, and if no,
provide a counterexample.

(b) Give a condition on {fn : n ∈ N} that guarantees

lim
n→∞

∫ 1

0
fn =

∫ 1

0
f.

Be sure to prove that your condition implies the desired conclusion.

(c) Give an example of a sequence of Lebesgue measurable functions {fn}
defined on [0, 1] that violates your condition in (b) and such that

lim
n→∞

∫ 1

0
fn 6=

∫ 1

0
f.

2. Let f ∈ L1(R), the set of Lebesgue integrable functions over R. Prove
that

lim
x→0

∫
R
|f(t + x)− f(t)|dt = 0.

You may use the fact that the space CC(R) of continuous functions on R
with compact support is dense in L1(R), with respect to the norm

‖g‖1 =
∫

R
|g(t)|dt.

3. Let f be a measurable function on R with f ∈ L1(R) ∩ L∞(R).

(a) Prove that for all p ∈ (1,∞), f ∈ Lp(R).

(b) Prove that
lim

p→∞
‖f‖p = ‖f‖∞.



4. A function f : [a, b] → R is said to be Lipschitz on [a, b] provided there
is a constant M > 0 such that |f(x)− f(y)| ≤ M |x− y| for all x, y ∈ [a, b].

(a) Prove that if g : [a, b] → [c, d] is absolutely continuous on [a, b], and
f : [c, d] → R is Lipschitz on [c, d], then f ◦ g : [a, b] → R is absolutely
continuous on [a, b].

(b) By using part (a) or otherwise, prove that any Lipschitz function f
defined on [a, b] is absolutely continuous. Is the converse true, i.e. is
an absolutely continuous function f : [a, b] → R necessarily Lipschitz?
Either prove this is true, or provide a counterexample.

5. Let f ∈ L1[−π, π], and for n ∈ Z, define cn = 1
2π

∫ π
−π f(t)e−intdt, where

eiθ = cos θ + i sin θ.

(a) Prove that lim|n|→∞ cn exists.

(b) Is the limit in (a) independent of f? If so, prove it. If no, give examples
of f1 and f2 ∈ L1[−π, π] with different limits arising in (a).

6. Let f : [0, 1] → R be continuous with f(0) = f(1). Prove that there exists
x ∈ [0, 3

4 ] with f(x) = f(x + 1
4).


