
1. Let m be the Lebesgue measure on the real line, and let B be a Borel
subset with m(B) <∞.

(a) Show that, for every 1 ≤ p < ∞, there exists a sequence of continuous
functions φn with compact supports such that φn → 1B in Lp (show details).

(b) Show that continuous functions with compact support are dense in
Lp(R).

2. Let ρy(x) = 1
π

y
x2+y2 where x ∈ R and y > 0. Given a bounded uniformly

continuous function f on R, let

uf (x, y) =
∫ ∞
−∞

ρy(x− z)f(z)dz

Show that

|uf (x, y)− f(x)| ≤ ωf (δ) + 2‖f‖∞(1− 2
π

arctan
δ

y
)

where
ωf (δ) = sup

x,x′∈R,|x−x′|<δ
{|f(x)− f(x′)|}

and ‖·‖∞ stands for L∞ norm. In particular, conclude from this that uf (x, y)→
f(x) uniformly as y → 0 for such f .

3. Let µ be a finite measure on (0, 1) such that µ and Lebesgue measure
are mutually singular. Show that, for every ε ∈ (0, µ(0, 1)), there exists a finite
collection of disjoint open intervals (xk, yk) such that

∑
|yk − xk| < ε and∑

µ(xk, yk) ≥ µ(0, 1)− ε.
4. Let (R, d1) be the metric space which is the real line R with usual

complete Euclidean metric d1(x, y) = |x − y| for all x, y ∈ R. If d2 is another
metric on R such that (R, d2) is a metric space with the same topology as
(R, d1), can we conclude that (R, d2) is a complete metric space? Justify your
answer. [Hint: Consider the function φ(x) = x

1+|x| and d2(x, y) = |φ(x)−φ(y)|.]
5. Let L2(−π, π) be the space of (complex-valued) absolutely square inte-

grable functions on (−π, π) with respect to Lebesgue measure. Denote

En(x) = einx, n = 0,±1,±2, . . . ,−π ≤ x ≤ π

and
Fn(x) = E−n(x) + nEn(x), n = 1, 2, 3, . . . ,−π ≤ x ≤ π

LetX1 be the smallest closed subspace of L2(−π, π) that contains E0, E1, E2, . . . .
Let X2 be the smallest closed subspace of L2(−π, π) that contains F1, F2, . . . .

(a) Is X1 + X2, that is the linear span of X1 and X2, dense in L2(−π, π)?
Recall that if A and B are linear subspaces then A+B = {a+b : a ∈ A, b ∈ B}.

(b) Is X1 +X2 closed? [Hint: consider
∑∞
n=1 n

−1En]
6. For a function f ∈ Lp[0,∞), 1 < p <∞, set

F (x) =
1
x

∫ x

0

f(t) dt
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(a) Assuming f is continuous nonnegative vanishing outside of a finite inter-
val, show that ∫ ∞

0

F p(t) dt =
p

p− 1

∫ ∞
0

F p−1(t)f(t) dt.

[Hint: consider an equation relating F, f and F ′.]
(b) For f as in part (a), establish Hardy’s inequality:

‖F‖p ≤
p

p− 1
‖f‖p.

[Hint: Try Hölder inequality.]
(c) Extend Hardy’s inequality to all f ∈ Lp[0,∞).
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Solutions
1. (a) For every ε > 0, there exists a compact set Kε ∈ B such that

m(B \Kε) < ε and therefore ‖1B − 1Kε‖p < ε. For a compact set K, consider
functions φδ(x) = max{1 − 1

δρ(x,K), 0}. They are continuous, they vanish
outside of a δ-neighborhood Uδ of K and their norm does not exceed m(Uδ \K).
It remains to cook an appropriate sequence.

(b) Using part (a), we can approximate every simple function that vanishes
outside of a set of finite measure. Those simple functions are dense in Lp(R)

2. Indeed, note that

uf (x, y)− f(x) =
∫ ∞
−∞

ρy(x− z)(f(z)− f(x)) dz

Fix x and denote by Uδ the δ-neighborhood of x. We have

|uf (x, y)− f(x)| ≤
∫ ∞
−∞

ρy(x− z)|f(z)− f(x)| dz =
∫
Uδ

+
∫
Ucδ

Now, ∫
Uδ

ρy(x− z)|f(z)− f(x)| dz ≤ ωf (δ)
∫
Uδ

ρy(x− z) dz ≤ ωf (δ)

and∫
Ucδ

ρy(x−z)|f(z)−f(x)| dz ≤ 2‖f‖∞
∫
Ucδ

ρy(x−z) dz ≤ 2‖f‖∞(1− 2
π

arctan
δ

y
)

as promised. Choosing, first, δ such that ωf (δ) < ε/2 and then, y that makes
the second part less than ε/2, we get a bound |uf (x, y)− f(x)| < ε uniformly.

3. Let µ[0, 1] = M > 0. There exists a set B of Lebesgue measure zero,
such that µ(Bc) = 0. For every ε > 0, there exists an open set U ⊃ B such that
m(U) < ε where m stands for Lebesgue measure. Next, U is a union of (at most
countable) collection of disjoint open intervals. Since B ⊂ U and µ(Bc) = 0,
we have µ(U) = M and therefore we can find a finite collection of disjoint open
intervals (xk, yk) such that

∑N
k=1 µ(xk, yk) ≥M − ε as promised.

4. Let d2(x, y) = |φ(x)− φ(y)| where φ(x) = x
1+|x| for all x ∈ R.

(a) Both metrics define the same topology:∣∣∣∣ x

1 + |x|
− y

1 + |y|

∣∣∣∣ ≤ |z(1 + |y|)− y(1 + |x|)|
(1 + |x|)(1 + |y|)

≤ |x− y + x|y| − y|x||
≤ |x− y + x|y| − y|y|+ y|y| − y|x||
≤ |x− y|+ |y||x− y|+ |y|(|y| − |x|)|
≤ |x− y|(1 + 2|y|)

and therefore d1 convergence implies d2 convergence. The other way, we have
to consider three cases.
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Case 1. Suppose x, y ≥ 0 and x, y,≤M for some fixed M . Then d2(x, y) ≥
|x−y|

(1+M)2 .
Case 2. Suppose x, y < 0 and x, y,≥ −M for some fixed M . Then again,

d2(x, y) ≥ |x−y|
(1+M)2 .

Case 3. Suppose x and y have opposite signs. Then d2(x, y) is small if both
x and y are close to zero, say, |x|, |y| < 1 and then again, d2(x, y) ≥ |x− y|/2.

Therefore, id zn → z in d1, then the same is true in d2 and vice versa.
(b) Consider a sequence zn = n. One can show that zn forms a Cauchy

sequence in d2, but there is no x ∈ R such that d2(zn, x) → 0 (otherwise
d1(zn, x) = |n− x| → 0 as well). Therefore, it is not complete.

5. X1 + X2 contains E0, E1, E2, . . . and E−k = Fk − kEk, k = 1, 2, . . . and
therefore it is dense in L2. However, it is not closed. Indeed, suppose

∞∑
n=1

n−1E−n =
∞∑
j=0

ajEj +
∞∑
k=1

bk(E−k + kEk)

where the first series on the right represents an element of X1 and the second
one belongs to X2. Taking inner product with E−k and then with Ek, we can
find bk = k−1, k = 1, 2, . . . and a0 = 0, aj = −1, j = 1, 2, . . . . But then, the
series

∑∞
j=0 ajEj = −

∑∞
j=1Ej does not converge.

6. (a) This is just Calculus. First of all, note that

xF ′(x) = f(x)− F (x)

Next, integrating by parts, we get∫ ∞
0

F p(t) dt = −p
∫ ∞

0

F p−1(t)tF ′(t) dt = −p
∫ ∞

0

F p−1(t)f(t) dt+p
∫ ∞

0

F p(t) dt

which implies the statement
(b) Applying the Hölder inequality and taking into account that F is also

non-negative, we get ∫ ∞
0

F p−1(t)f(t) dt ≤ ‖F p−1‖q‖f‖p

where 1/q + 1/p = 1. Note that q = p
p−1 and therefore

‖F p−1‖q =
(∫

(F (t))(p−1)q dt

)1/q

=
(∫

(F (t))p dt
)(p−1)/p

= ‖F‖p−1
p

Therefore part (a) implies

‖F‖pp ≤
p

p− 1
‖F‖p−1

p ‖f‖p

which is equivalent to (b).
(c) First, extend this to linear combinations. Next, continuous functions

with compact support are dense in Lp[0,∞).
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