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1. Answer the following questions.

(a) Let H be a subgroup of G and let X be the set of all left cosets of H in G. Show that
there exists a normal subgroup N of G such that N ⊆ H and G/N is isomorphic to
a subgroup of the symmetric group on X.

(b) Suppose that G is a group of order 10 and G has a subgroup of order 2 that is not
normal. Show that G is isomorphic to a subgroup of S5, the symmetric group on five
elements.

2. Show that every group of order 143 is cyclic. [Give an appropriate full justification.]

3. Either prove or disprove the following statement, with a full justification.

If R is an integral domain that is not a field, then the polynomial ring R[x] can never
be a principal ideal domain.

4. Consider the vector space V
def
= R2 over R and the linear transformation T : V → V

that projects onto the y-axis. Consider the polynomial ring R[t] in one variable t over R
and form the R[t]-module on V using T . That is, fv = f(T )(v) for all f ∈ R[t] and all
v ∈ V . Show that the only R[t]-submodules are V , 0, the x-axis, and the y-axis.

5. Suppose that F is a subfield of an algebraically closed field K, and that −1 is not a sum
of finitely many squares in F . (A square itself is also regarded as a sum of squares.)

(a) Using Zorn’s lemma, show that F has an algebraic extension G in which −1 is still
not a sum of finitely many squares, while it is a sum of finitely many squares in any
proper algebraic extension of G.

(b) Taking G as in (a), show that every sum of finitely many squares in G is a square.
[Hint. Suppose that a ∈ G is a sum of finitely many squares of G, but is not a square.
Adjoin a root of x2 − a to G.]

6. Answer the following questions.

(a) Fix an integer n ≥ 1. Let I = {1, 2, . . . , n} and let G be a subgroup of Sn, the
symmetric group on I. Define an equivalence relation on I in the following way: for
any a, b ∈ I,

a ∼ b iff a = b or the transposition (a b) lies in G.

First, show that this is an equivalence relation on I. Second, note that Sn and whence
also G naturally act on I. In addition, if G acts transitively on I, then show that all
the equivalence classes under ∼ have the same number of elements.

(b) Let f(x) ∈ Q[x] be irreducible and have prime degree p ≥ 5. Suppose that f has
exactly p− 2 real roots and 2 nonreal roots. Then find the Galois group of f over Q.
[Hint. Use (a) above.]


