RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS!

Algebra

Ph.D. Preliminary Exam Department of Mathematics University of Colorado Boulder

January, 2013

INSTRUCTIONS:

- 1. Answer each of the six questions on a separate page. Turn in a page for each problem even if you cannot do the problem.
- 2. Label each answer sheet with the problem number.
- 3. Put your number, not your name, in the upper right hand corner of each page.

Algebra Preliminary Exam, January 2013, First Draft

- 1. Suppose $G = A \rtimes H$ is a finite group and A is abelian. Prove that the size of the conjugacy class of $a \in A$ in G is $|H : C_H(a)|$.
- 2. Let $H, K \triangleleft G$, where G is a finite group.
 - (a) For each $P \in \text{Syl}_p(HK)$, show that $P \cap H \in \text{Syl}_p(H)$, $P \cap K \in \text{Syl}_p(K)$, and $P = (P \cap H)(P \cap K)$.
 - (b) Show that if H and K are nilpotent, then HK is nilpotent.
- 3. Prove that the subring of $\mathbb{Q}[x]$ consisting of all polynomials with integer constant term is not a UFD.
- 4. Does there exist a 6×6 matrix A
 - (a) over \mathbb{Q}
 - (b) over \mathbb{R} ,

such that $A^4 + I = A^2 - I$? Prove your claim.

- 5. How many roots does the polynomial $x^{2013} 1$ have in the field \mathbb{F}_{67} (note that $2013 = 3 \cdot 11 \cdot 61$)?
- 6. Let F be a field of characteristic 0. Show that if E/F is a normal field extension of prime degree p such that F contains the p^2 th roots of unity, then E has an extension of degree p.