2012 January Algebra Preliminary Exam

- 1. True/False. Either show the following are true or supply a counter-example. Let G be a group with a subgroup H.
 - (a) If P is a Sylow p-subgroup of G, then $P \cap H$ is a Sylow p-subgroup of H.
 - (b) The number of Sylow *p*-subgroups of G is greater than or equal to the number of Sylow *p*-subgroups of H.
- 2. A group G is Camina if for every $g \in G \setminus [G, G]$, the coset g[G, G] is a conjugacy class of G.
 - (a) If G is a Camina group, is it the case that $[G,G] \subseteq Z(G)$ or $Z(G) \subseteq [G,G]$?
 - (b) If G is a p-group with [G,G] = Z(G) a cyclic group of prime order, then show that G is Camina.
- 3. Let R be a ring with unity $1 \neq 0$. A left R-module $V \neq \{0\}$ is called *irreducible* if its only left R-submodules are $\{0\}$ and V.
 - (a) Show that if every nonzero element in R has a left inverse, then R is a division ring.
 - (b) Show that R is a division ring if and only if the left R-module R is an irreducible R-module.
 - (c) Show that R is a division ring if and only if every nonzero left R-module has a submodule isomorphic to the left R-module R.
- 4. Let p be a prime, and $G = GL_2(\mathbb{F}_p)$ (the invertible 2×2 matrices with entries in \mathbb{F}_p).
 - (a) Writing the field \mathbb{F}_{p^2} as a vector space over \mathbb{F}_p , explain how the multiplicative group of \mathbb{F}_{p^2} is isomorphic to a subgroup of G. Show then that G has an element of order $p^2 1$.
 - (b) Describe an element in G which is not conjugate in G to any matrix in Jordan canonical form.
- 5. Let p be a prime, and q a power of p. Let \mathbb{F}_p and \mathbb{F}_q denote respectively the finite fields with p and q elements. Let T denote the trace map from \mathbb{F}_q to \mathbb{F}_p . (Recall that for a separable extension of fields L/K of degree n, if σ_i , $1 \le i \le n$, are the distinct embeddings of L into an algebraic closure \overline{K} of K that fix K, then for any $a \in L$, $T(a) = \sum_{i=1}^n \sigma_i(a)$.)

If p = 2, show that $T(x^2) = T(x)$ for all $x \in \mathbb{F}_q$, but if $p \neq 2$, then there is some $x \in \mathbb{F}_q$ such that $T(x^2) \neq T(x)$.

6. You are given that the polynomial

$$f(x) = x^5 + 11x - 44$$

is solvable by radicals over \mathbb{Q} , and has discriminant $2^{14}7^211^4$. Calculate the Galois group of f over the rationals. Show and justify all your work.