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1. Let G be a nonabelian finite simple group, and let p be a prime divisor of its
order |G|. Show that if the number of Sylow p-subgroups of G is n, then |G|
divides n!.

2. Let G be a finite solvable group. Show that

(a) G has a nontrivial abelian normal subgroup of prime power order, and

(b) every maximal proper subgroup of G has prime power index in G.

3. Let R be a UFD such that any ideal generated by two elements of R is principal.
Prove that R is a PID.

(Hint: If a ∈ I is to generate the ideal I, consider what the factorization of a
must look like.)

4. Let A be an n×n matrix over C such that tr(Ak) = 0 for all k > 0. Show that
An = 0. (The trace tr(M) of a matrix M is the sum of its diagonal entries.)

5. Find the splitting field of x4 + x3 + 1 over the 32-element field.

6. True or false? Justify your answer.

(i) Every field extension of degree 2 is Galois.

(ii) Every algebraically closed field is infinite.

(iii) If α = 5
√

2 + i + 5
√

2− i, then Gal(Q[α]/Q) ∼= S5.


