1. There exists an injective group homomorphism $\sigma: S_4 \to A_7$ given by

$$\begin{aligned} \sigma((12)) &= (12)(56), \\ \sigma((23)) &= (23)(56), \\ \sigma((34)) &= (34)(56). \end{aligned}$$

List the elements in one Sylow 2-subgroup of S_4 and hence, or otherwise, write down a Sylow 2-subgroup of A_7 . Deduce that A_7 contains precisely 315 Sylow 2-subgroups, each of which is self-normalizing. (Hint: each Sylow 2-subgroup of A_7 contains precisely two elements of cycle type (4, 2, 1).)

- 2. Classify up to isomorphism all groups of order 8. (Your argument should contain full proofs, although you may use general theorems without proof if you state them clearly.)
- 3. Let S be the subring of the field of fractions of $\mathbb{R}[x]$ consisting of those fractions whose denominators are relatively prime to $x^2 + 1$, i.e., of the form p(x)/q(x)with q(x) relatively prime to $x^2 + 1$.
- (i) What are the units of S?
- (ii) Identify the ideals of S.
- (iii) Is S a unique factorization domain? Explain.
- (iv) If \mathbb{R} is replaced by \mathbb{C} and the set of rational functions corresponding to S constructed, would it have a unique maximal ideal? Explain.
 - 4. Let R be a ring with identity, 1, and let $f \in R$ be an idempotent (i.e., $f^2 = f$).
 - (i) Show that $Rf = \{rf : r \in R\}$ is a projective left *R*-module under the action $r_1 \cdot (rf) = (r_1 r) f$.
- (ii) Now let $R = M_2(\mathbb{C})$, and let M be the left R-module

$$M = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} : a, b \in \mathbb{C} \right\}$$

with the usual action. Prove that M is projective.

- 5. Let α be a zero of the polynomial $p(x) = x^3 x 1$ over \mathbb{Z}_3 in some splitting field.
- (i) Express the multiplicative inverse of α as a polynomial of minimum degree in α .
- (ii) Express the other zeros of p(x) as polynomials of minimum degree in α .
- (iii) What is the minimum polynomial q(x) for α^2 ?
- (iv) Express the other zeros of q(x) as polynomials of minimum degree in α .
 - 6. Let $f(x) = x^3 5 \in \mathbb{Q}[x]$.
- (i) Find a splitting field for f over \mathbb{Q} .
- (ii) Find the Galois group for f.
- (iii) Find all proper, nontrivial subgroups of this Galois group and the fields to which they correspond according to the fundamental theorem of Galois theory.