Midterm 3 Review

3.

Short Answer

2. Give an example of a non-consta $R = \{(x, y) \mid -1 \le x \le 1, -1 \le y \le 1\}$ is 0. Give an example of a non-constant function f(x, y) such that the average value of f over

3. Compute the Riemann sum for the double integral
$$x + 2y \, dA$$

given grid and choice of sample points.

where $R = [0, 6] \times [0, 2]$ for the

(0,2) ٠ ٠ ٠ (6,0)

∬3dA where $R = [-1, 1] \times [2, 3]$ by first identifying it as the volume of a solid. Evaluate R 4.

$$\iint \sqrt{4-x^2} \, dA$$

where $R = [-2, 2] \times [0, 3]$ by first identifying it as the volume of a solid. Evaluate R 5.

6. Find
$$\int_{0}^{2} f(x,y) dy \quad \text{and} \quad \int_{0}^{1} f(x,y) dx \quad \text{for } f(x,y) = 2xy - 3x^{2}.$$

7. Calculate the double integral
$$\iint_{R} xy^{2} + \frac{y}{x} dA$$
, where $R = \{(x, y) \mid 2 \le x \le 3, -1 \le y \le 0\}$.

8. Compute the average value of
$$f(x, y) = 3 + xy^2$$
 over $R = [-2, 2] \times [0, 1]$.

9. Compute the average value of
$$f(x, y) = x^2 + y^2$$
 over $R = \{(x, y) \mid 0 \le x \le 2, 0 \le y \le 2\}$.

Evaluate the double integral of ye^{y^4} over the region bounded by $y = \sqrt{x}$, y = 2, and x = 0. 10.

$$\int_{0}^{1} \int_{2\pi}^{2} \frac{1}{\sqrt{1 + (2\pi/\gamma)}} \, dy \, dx$$

11. Evaluate

12. Evaluate
$$\int_{0}^{1} \int_{x+1}^{2} e^{x/(y-1)} dy dx.$$

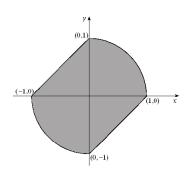
13. Find the volume of the solid that is common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.

$$\int_0^2 \int_{x^2}^4 (xy^2 + x) \, dy \, dx$$

14. Express the integral $\sqrt{2\pi}$ as an equivalent integral with the order of integration reversed.

15. Let *E* be the solid under the plane x + y + z = 5 and above the region in the *xy*-plane bounded by $x = 4 - y^2$ and x + y = 2. Express the volume of *E* as an iterated integral in rectangular coordinates.

16. Rewrite $\iint_{R} f(x,y) dA$ as an iterated integral with y as the variable of integration in the outer integral, where *R* is the region shown below.



$$\int_0^1 \int_0^{\sqrt{1-x^2}} e^{-(x^2+y^2)} dy \, dx$$

17. Use polar coordinates to evaluate

$$\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{0} \frac{xy}{\sqrt{x^{2}+y^{2}}} \, dy \, dx$$

18. Convert the integral

to polar coordinates and evaluate it.

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-y^{2}}} x \, dx \, dy$$

19. Rewrite the integral

$$\int_{0}^{1} \int_{x}^{1+\sqrt{1-x^{2}}} x \, dy \, dx$$

20. Rewrite the integral in terms of polar coordinates, then evaluate the integral.

21. Let *R* be the region bounded by $y = x^2$, y = 0, and x = 1. Find the center of mass of a lamina in the shape of *R* with density function p(x, y) = xy.

22. Find the moment of inertia I_x about the *x*-axis and the moment of inertia I_y about the *y*-axis for the region in the first quadrant bounded by y = x and $y^2 = x^3$, assuming p = 1.

23. Find the mass and center of mass of the lamina that occupies the triangular region with vertices (0, 0), (1, 1), and (4, 0), and has density function p(x, y) = x.

24. Find the center of mass of the lamina that occupies the part of the disk $x^2 + y^2 \le 1$ in the first quadrant if the density at any point is proportional to the square of its distance from the origin.

26. Find the area of the part of the surface $z = x + y^2$ that lies above the triangle with vertices (0, 0), (1, 1), and (0, 1).

27. Compute the area of that part of the graph of $3z = 5 + 2x^{3/2} + 4y^{3/2}$ which lies above the rectangular region in the first quadrant of the *xy*-plane bounded by the lines x = 0, x = 3, y = 0, and y = 6.

28. Find the area of the surface cut from the cone $z = 1 - \sqrt{x^2 + y^2}$ by the cylinder $x^2 + y^2 = y$.

29. Find the area of that part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the plane z = 1.

30. Find the area of that part of the sphere $x^2 + y^2 + z^2 = 4z$ that lies inside the paraboloid $z = x^2 + y^2$.

31. Find the area of the surface with vector equation $\mathbf{r}^{(s, t)} = \langle s \cos t, s \sin t, s \rangle$, $1 \le s \le 5$, $0 \le t \le 2\pi$.

$$\int_0^2 \int_0^{x^2} \int_0^{\ln x} x e^y \, dy \, dz \, dx$$

32. Evaluate the iterated integral

33. Find y = 1, and z = y. Sister the solid bounded by the cylinder $y = x^2$ and the planes z = 0,

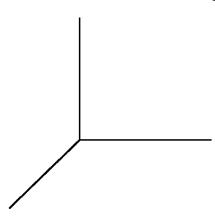
$$\int_{0}^{x/2} \int_{y}^{x/2} \int_{0}^{xy} \cos\left(\frac{z}{y}\right) dz \, dx \, dy$$

34. Evaluate the iterated integral

35. Find the volume of the solid formed by the intersection of the cylinder $y = x^2$ and the two planes given by z = 0 and y + z = 4.

$$V = \int_0^3 \int_0^{(3-x)/2} \int_0^{4-x^2} dy \, dx \, dz$$

36. Suppose the volume of a solid is given by(a) Sketch the solid whose volume is given by V.



(b) Evaluate the integral to find the volume of the solid.

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{2-x^{2}-y^{2}}} dz \, dy \, dx$$

37. Sketch the solid whose volume is given by the triple integral

38. Find the average value of the function f(x, y, z) = xyz over the solid *E* bounded by planes z = y, y = x, x = 1, and z = 0.

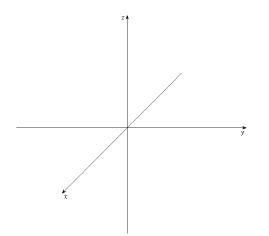
39. Find the *z*-coordinate of the centroid of the solid *E* bounded by the cone $z = \sqrt{x^2 + y^2}$ and the plane z = 2.

40. Find the volume bounded above by the surface $z = x^2 - y^2$, $x \ge 0$, below by the *xy*-plane, and laterally by the cylinder $x^2 + y^2 = 1$.

41. Find the volume of the region inside the cylinder $x^2 + y^2 = 7$ which is bounded below by the *xy*-plane and above by the sphere $x^2 + y^2 + z^2 = 16$.

42. Evaluate $\iiint_{\mathbb{F}} e^{(x^2 + y^2 + z^2)^{3/2}} dV$, where *E* is the solid bounded by the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z = \frac{1}{\sqrt{3}} \sqrt{x^2 + y^2}$.

43. Sketch the region *E* whose volume is given by the integral $\int_{0}^{2\pi} \int_{x/6}^{5x/6} \int_{1/\sin\phi}^{2} \rho^{2} \sin\phi \, d\rho \, d\phi \, d\theta$



Find the mass of a solid ball of radius 2 if the density at each point (x, y, z) is $1 + \sqrt{x^2 + y^2 + z}$ 44.

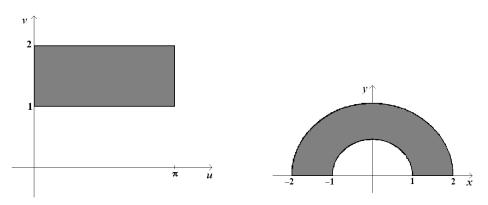
Use the change of variables x = au, y = bv, z = cw to evaluate $\iiint_{\mathbb{F}} y \, dV$, where *E* is the solid 45. enclosed by the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

46. Compute the Jacobian of the transformation *T* given by Compute the area of the image of $S = \{(u, v) | 0 \le u \le 1, 0 \le v \le 1\}$ and compare it to the area of *S*.

47. Compute the Jacobian of the transformation T given by $x = v \cos 2\pi u$, $y = v \sin 2\pi u$. Describe the image of $S = \{(u, v) | 0 \le u \le 1, 0 \le v \le 1\}$, and compute its area.

, where *R* is the region enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\iint_{\mathbb{R}} \sqrt{b^2 x^2 + a^2 y^2} \, dA$ Evaluate 48.

Find a transformation x = x (u, v), y = y (u, v) maps the region in the *uv*-plane into the *xy*-plane. 49.





50. Find a transformation x = x (u, v), y = y (u, v) maps the region in the *uv*-plane into the *xy*-plane.

SHORT ANSWER

1. ANS: $\frac{87}{2}$

PTS: 1

2. ANS:

Possible functions include f(x, y) = x and f(x, y) = y. Any linear function of x and y with no constant term will work, as will many other functions.

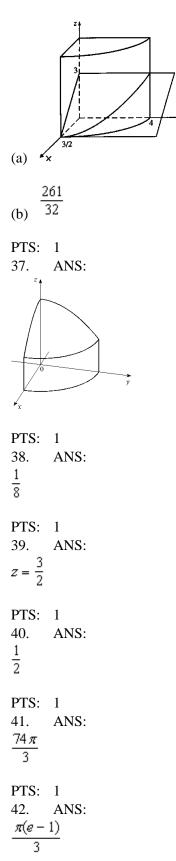
PTS: 1 ANS: 3. 60 PTS: 1 ANS: 4. 6 PTS: 1 5. ANS: бπ PTS: 1 ANS: 6. $\int_0^2 f(x,y) \, dy = 4x - 6x^2, \int_0^1 f(x,y) \, dx = y - 1$ PTS: 1 ANS: 7. $\frac{5}{6} + \ln \sqrt{\frac{2}{3}}$

PTS: 1 8. ANS: 3 PTS: 1 9. ANS: $\frac{8}{3}$ PTS: 1 10. ANS: $\frac{e^{16}-1}{4}$ PTS: 1 11. ANS: $2\sqrt{2} - 2$ PTS: 1 12. ANS: $\frac{e-1}{2}$ PTS: 1 $\frac{16a^3}{3}$ ANS: PTS: 1 14. ANS: $\int_0^4 \int_0^{\sqrt{y}} (xy^2 + x) \, dx \, dy$ PTS: 1 15. ANS: $\int_{-1}^{2} \int_{2-y}^{4-y^2} (5-x-y) \, dx \, dy$ PTS: 1 16. ANS: $\int_{-1}^{0} \int_{-\sqrt{1-y^2}}^{y+1} f(x,y) \, dx \, dy + \int_{0}^{1} \int_{y-1}^{\sqrt{1-y^2}} f(x,y) \, dx \, dy$

PTS: 1

17. ANS: $\frac{e-1}{4e}\pi$ PTS: 1 18. ANS: $-\frac{4}{3}$ PTS: 1 19. ANS: $\int_{-x/2}^{x/2} \int_0^1 r \cos \theta \, r \, dr \, d\theta = \frac{2}{3}$ PTS: 1 20. ANS: $\int_{x/4}^{x/2} \int_0^{2\sin\theta} r\cos\theta r \, dr \, d\theta = \frac{1}{2}$ PTS: 1 21. ANS: $\left(\frac{6}{7},\frac{1}{2}\right)$ PTS: 1 22. ANS: $I_x = \frac{1}{44}, I_y = \frac{1}{36}$ PTS: 1 23. ANS: $m = \frac{10}{3}; (\bar{x}, \bar{y}) = (2.1, 0.3)$ PTS: 1 24. ANS: $(x, y) = \left(\frac{\frac{8}{5\pi}, \frac{8}{5\pi}}{\frac{8}{5\pi}}\right)$ PTS: 1 25. ANS: C = 2PTS: 1 26. ANS:

 $\frac{3}{\sqrt{6}} - \frac{1}{3\sqrt{2}}$ PTS: 1 27. ANS: $\frac{4}{15}(392\sqrt{7}-789)$ PTS: 1 28. ANS: $\frac{\pi\sqrt{2}}{4}$ PTS: 1 29. ANS: 4π PTS: 1 30. ANS: 4π PTS: 1 31. ANS: $24\sqrt{2}\pi$ PTS: 1 32. ANS: $\frac{4}{3}$ PTS: 1 33. ANS: $\frac{4}{27}$ PTS: 1 34. ANS: $\frac{\pi}{2} - 1$ PTS: 1 35. ANS: 256 15 PTS: 1 36. ANS:



PTS: 1

43. ANS:

A sphere of radius 2 with a hole of radius 1 drilled through the center.

