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1. (25 points) (a) Find the area of the parallelogram determined by the following vectors:
~v1 = 〈2, 3,−3〉, ~v2 = 〈1, 5, 0〉

Solution: The area of the parallelogram is given by

|~v1 × ~v2| =

∣∣∣∣∣∣det

~i ~j ~k
2 3 −3
1 5 0

∣∣∣∣∣∣
=
∣∣∣15~i− 3~j + 7~k

∣∣∣
=
√

152 + 32 + 72

=
√

283

(b) Uising vectors, find the angle between the two planes below. Leave your answer in terms of inverse
trigonometric functions.

3x+ 6y + z = 5 and 2x− y +
1

2
z = −7

Solution: These planes have normal vectors ~n1 = 〈3, 6, 1〉 and ~n2 = 〈2,−1, 12 〉. The angle θ between
them can be found from the equation ~n1 · ~n2 = |~n1||~n2| cos θ.

|~n1| =
√

46

|~n2| =
√

11

2

~n1 · ~n2 = 3 · 2 + 6 · −1 + 1 · 1

2

=
1

2

Hence

θ = cos−1

(
~n1 · ~n2
|~n1||~n2|

)
= cos−1

(
1

2
√

253

)

(c) Using vector products, find the volume of the parallelepiped determined by the following vectors:

~v1 = 〈2, 2,−3〉, ~v2 = 〈0, 2,−1〉, ~v3 = 〈−3, 2,−1〉.

Solution: The volume of the parallelepiped is given by

|~v1 · (~v2 × ~v3)| = |~v1 · 〈0, 3, 6〉|
= | − 12|
= 12

1/7



MATH 2400 Midterm 1 (continued) September 17, 2014

2. (25 points) (a) Find an equation of the line passing through the point P0(1, 2,−3) and parallel to the
vector 〈1,−1, 2〉.

Solution: The line can be expressed parametrically by

~r(t) = ~P0 + t~v = 〈1 + t, 2− t,−3 + 2t〉

or equivalently,

x = 1 + t

y = 2− t
z = −3 + 2t

By solving for t we can also express this line symmetrically as

x− 1 = −y + 2 =
z + 3

2

(b) Find an equation of the plane passing through P0(1, 2,−3), P1(0, 2, 1), and P2(−1, 5, 2).

Solution: Consider for example the vectors
−−−→
P0P1 = 〈−1, 0, 4〉 and

−−−→
P0P2 = 〈−2, 3, 5〉. Then

~n =
−−−→
P0P1 ×

−−−→
P0P2

= 〈−12,−3,−3〉

is a normal vector to the plane. Choosing P0 for example, the plane is given by the equation

~n · (〈x, y, z〉 − P0) = 0

Hence the equation of the plane is
4x+ y + z = 3
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(c) What is the distance of the point P3(−1, 1, 1) from the plane passing through P0(1, 2,−3) with
normal vector 〈1, 0,−4〉?

Solution: We project the displacement vector
−−−→
P0P3 = 〈−2,−1, 4〉 onto the normal vector ~n =

〈1, 0,−4〉:

|
−−−→
P0P3 · ~n|
|~n|

=
| − 2 + 0− 16|√

12 + 02 + 42

=
18√
17

(d) Find an equation (or equations) representing all the lines passing through the point P0(1, 2,−3)
and perpendicular to the vector 〈1,−1, 1〉.

Solution: All such lines constitute the plane

〈1,−1, 1〉 · (〈x, y, z〉 − ~P0) = 0

or equivalently
z = −4− x+ y

Hence, all such lines have parametric equations

x = 1 + at

y = 2 + bt

z = −3− at+ bt

for any real numbers a and b.

3/7



MATH 2400 Midterm 1 (continued) September 17, 2014

3. (25 points) Let z = f(x, y) = 5 +
√
x2 + (y − 3)2 − 1.

(a) Find the domain of the function f(x, y) = 5 +
√
x2 + (y − 3)2 − 1.

Solution: The domain is the set of all (x, y) values that may be used as inputs for f . Thus we
need

x2 + (y − 3)2 − 1 ≥ 0

or equivalently
x2 + (y − 3)2 ≥ 1

This is the region outside and including the circle centered at (0, 3) with radius 1.

(b) Write equations for the horizontal traces (or cross-sections) of the function z = f(x, y) = 5 +√
x2 + (y − 3)2 − 1 at z = 5, z = 10, and z = 20.

Solution:

z = 5 : x2 + (y − 3)2 = 1

z = 10 : x2 + (y − 3)2 = 6

z = 20 : x2 + (y − 3)2 = 16

(c) Graph the horizontal traces (or cross-sections) of the function z = f(x, y) = 5+
√
x2 + (y − 3)2 − 1

at z = 5, z = 10, and z = 20.

Solution: Your graphs should be circles centered at (0, 3) with radii 1,
√

6, and 4, respectively.
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(d) By using traces, sketch the graph of the function z = f(x, y) = 5 +
√
x2 + (y − 3)2 − 1 for z ≥ 5.
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4. (25 points) Consider the equations

(a) x2 + y2 − z = 0 in Cartesian (= rectangular) coordinates.

(b) r2 − z2 = 0 in cylindrical coordinates.

(c) ρ2(1 + cosφ) = 1 in spherical coordinates.

(i) Which quadric surface, if any, does equation (a) represent?

Solution: The graph of z = x2 + y2 is an elliptic (in fact, circular) paraboloid.

(ii) Give an equation in cylindrical coordinates representing the surface given by (a).

Solution: r2 − z = 0.

(iii) Give an equation in spherical coordinates representing the surface given by (a).

Solution:

x2 + y2 − z = 0

x2 + y2 + z2 − z2 − z = 0

ρ2 − ρ2 cos2 φ− ρ cosφ = 0
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(iv) Give an equation in Cartesian (= rectangular) coordinates representing the surface given by (b).

Solution: x2 + y2 − z2 = 0.

(v) Give an equation in Cartesian (= rectangular) coordinates representing the surface of equation (c).

Solution:

ρ2(1 + cosφ) = 1

ρ2 + ρ cosφ · ρ = 1

x2 + y2 + z2 + z
√
x2 + y2 + z2 = 1
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