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List of important Definitions and Theorems

Use this as you would a dictionary. When you look up a definition and find in it a word
whose definition you don’t know or don’t remember, look back for the definition of that
word. Ultimately you will come to words not defined here. For those you have to rely
on your intuitive sense of what they plausibly might mean. To fully understand the
definitions, study carefully the examples that follow them.

1 Foundations

Definition 1.1. By a function is meant a collection of one or more ordered pairs no
two of which have the same first term. If f is a function, then

(i) the set of all first terms of ordered pairs in f is called the domain of f and is
denoted by dom f ,

(ii) the set of all second terms of ordered pairs in f is called the range of f and is
denoted by ran f ,

(iii) if x is an element of the domain of the function f , then the second term of the
ordered pair in f whose first term is x is called the value of f at x and is denoted
by f(x) (read f of x); thus the ordered pair is 〈x, f(x)〉.

Synonyms: A synonym for ‘function’ is ‘mapping’. When f is referred to as a mapping,
then the value of f at x is called ‘the image of x under (the mapping) f ’.

Notation. A standard way to indicate symbolically that f is a mapping (function) whose
domain is X and whose range is a subset of Y , and that f(x) is the image of x under f is

f : X → Y, x 7→ f(x) .

Definition 1.2. Because ran f ⊂ Y , f is said to map X into Y , emphasized by the

notation f : X
into→ Y ; if specifically ran f = Y , then f is said to map X onto Y , made

specific by the notation f : X
onto→ Y .

Examples 1.1. Here are some examples of functions:

(1) the identity function on a set X, idX : X → X, x 7→ x;

(2) the (principle) square-root function,
√

: R≥0 → R≥0, x 7→ √
x;

(3) the natural logarithm function, ln : R>0 → R, x 7→
∫ x

1

1

t
dt.

Definition 1.3. If no two ordered pairs in the function f have the same second term,
then f is said to be invertible. If f is invertible, then

{〈y, x〉 | 〈x, y〉 is in f}
is also a function, called the inverse (function) of f and denoted by f−1.
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Examples 1.2. The functions of Examples 1.1 are all invertible. Their inverses are
described by

(1) id−1

X = idX ;

(2)
√ −1 : R≥0 → R≥0, x 7→ x2;

(3) ln−1 = the exponential function, exp : R → R>0, y 7→ x such that
∫ x

1

1

t
dt = y.

Definition 1.4. If f : X → Y , A ⊂ X, and B ⊂ Y , then

1. f(A) = {f(x) | x ∈ A}, called the image of A under f , and

2. f−1(B) = {x | f(x) ∈ B}, called the preimage of B under f . (If f is not invertible,
this is an abuse of notation established by convention long ago.)

Definition 1.5. If f : U → Y and g : V → Z, then g is composable with f means that
f(U)∩V 6= ∅ (in other words, the range of f and the domain of g have at least one element
in common). If g is composable with f , then {〈x, z〉 | f(x) ∈ dom g and z = g(f(x))} is
a function called the composition of g with f and denoted by g ◦ f and by g(f). Thus
g ◦ f : f−1(ran f ∩ dom g) → Z, x 7→ g(f(x).

Definition 1.6. R = {all real numbers}, R
1 = {all real number 1-tuples}, R

2 = {all real
number 2-tuples}, R

3 = {all real number 3-tuples}, and so on. Thus, typical elements
of R, R

1, R
2, and R

3 are x, 〈x〉, 〈x, y〉, and 〈x, y, z〉, where each of x, y, and z is a real
number. R

1 is often identified with R by identifying 〈x〉 with x.

Notation. f(〈x〉), f(〈x, y〉), and f(〈x, y, z〉) are usually abbreviated to f(x), f(x, y), and
f(x, y, x).

Definition 1.7. Functions of the form

f : R → R, x 7→ c + mx,

f : R
1 → R, 〈x〉 7→ c + mx,

f : R
2 → R, 〈x, y〉 7→ c + mx + ny,

f : R
3 → R, 〈x, y, z〉 7→ c + mx + ny + lz,

where c, m, n, l ∈ R, are said to be linear. If c = 0, the linear function f is said to be
homogeneous.

Definition 1.8. If f : X → R, then by the graph of f is meant

• {〈x, f(x)〉 | x ∈ X} if X ⊂ R or X ⊂ R
1,

• {〈x, y, f(x, y)〉 | 〈x, y〉 ∈ X} if X ⊂ R
2,

• {〈x, y, z, f(x, y, z)〉 | 〈x, y, z〉 ∈ X} if X ⊂ R
3,
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Definition 1.9. If E : U → R and F : V → R, then

• E(x) = F (x) is called an equation in x if U, V ⊂ R or U, V ⊂ R
1, and

{x | E(x) = F (x) is true} is called its graph;

• E(x, y) = F (x, y) is called an equation in x and y if U, V ⊂ R
2, and

{〈x, y〉 | E(x, y) = F (x, y) is true} is called its graph;

• E(x, y, z) = F (x, y, z) is called an equation in x, y, and z if U, V ⊂ R
3, and

{〈x, y, z〉 | E(x, y, z) = F (x, y, z) is true} is called its graph;

• E(x, y, z, w) = F (x, y, z, w) is called an equation in x, y, z, and w if U, V ⊂ R
4,

and {〈x, y, z, w〉 | E(x, y, z, w) = F (x, y, z, w) is true} is called its graph.

Theorem 1.1. If E : U → R, F : V → R, and f : X → R, then

• the graph of E(x, y) = F (x, y) is the graph of f if U, V ⊂ R
2, X ⊂ R or X ⊂ R

1,
E(x, y) = y, and F (x, y) = f(x);

• the graph of E(x, y, z) = F (x, y, z) is the graph of f if U, V ⊂ R
3, X ⊂ R

2,
E(x, y, z) = z, and F (x, y, z) = f(x, y);

• the graph of E(x, y, z, w) = F (x, y, z, w) is the graph of f if U, V ⊂ R
4, X ⊂ R

3,
E(x, y, z, w) = w, and F (x, y, z, w) = f(x, y, z).

Definition 1.10. If each of H and K is a set, then by the cartesian product of H
with K, denoted by H ×K, is meant the set of all ordered pairs 〈h, k〉 such that h ∈ H
and k ∈ K, which is to say that H × K = {〈h, k〉 | h ∈ H and k ∈ K}.

Definition 1.11. If each of H, K, and L is a set, then by the cartesian product of H
with K with L, denoted by H × K × L, is meant the set of all ordered triples 〈h, k, l〉
such that h ∈ H , k ∈ K, and l ∈ L, which is to say that H × K × L = {〈h, k, l〉 |
h ∈ H, k ∈ K, and l ∈ L}.

Examples 1.3. Here are some examples of cartesian products:

(1) R
2 = R × R;

(2) R
3 = R × R × R;

(3) [a, b]× [c, d] = {〈x, y〉 | a ≤ x ≤ b and c ≤ y ≤ d} (a closed rectangular region in R
2);

(4) (a, b) × (c, d) = {〈x, y〉 | a < x < b and c < y < d} (an open rectangular region
in R

2);

(5) [a, b] × (c, d) = {〈x, y〉 | a ≤ x ≤ b and c < y < d} (a rectangular region in R
2 that is

not open and not closed);

3



(6) [a, b)× (c, d] = {〈x, y〉 | a ≤ x < b and c < y ≤ d} (a rectangular region in R
2 that is

not open and not closed);

(7) [a, b] × [c, d] × [e, f ] = {〈x, y, z〉 | a ≤ x ≤ b, c ≤ y ≤ d, and e ≤ z ≤ f} (a closed
rectangular region in R

3);

(8) (a, b) × (c, d) × (e, f) = {〈x, y, z〉 | a < x < b, c < y < d, and e < z < f} (an open
rectangular region in R

3).

(9) (a, b] × (c, d) × (e, f ] = {〈x, y, z〉 | a < x ≤ b, c < y < d, and e < z ≤ f} (a
rectangular region in R

3 that is not open and not closed).
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2 Continuous Functions and Limits

Definition 2.1. By a metric space is meant a set S equipped with a metric (also
called a distance function) d : S × S → R≥0, 〈p, q〉 7→ d(p, q) (short for d(〈p, q〉)) such
that if each of p, q, and r is in S, then

(i) d(p, p) = 0,

(ii) d(p, q) > 0 if p 6= q,

(iii) d(p, q) = d(q, p), and

(iv) d(p, r) ≤ d(p, q) + d(q, r).

Examples 2.1. Here are some examples of metric spaces:

(1) S = R, d(x, a) = |x − a|;

(2) S = R
1, d(〈x〉, 〈a〉) = |x − a|;

(3) S = R
2, d(〈x, y〉, 〈a, b〉) =

√

(x − a)2 + (y − b)2;

(4) S = R
3, d(〈x, y, z〉, 〈a, b, c〉) =

√

(x − a)2 + (y − b)2 + (z − c)2.

Convention. Whenever R, R
1, R

2, or R
3 is used as a metric space, its metric is under-

stood to be that of the preceding example, unless some other metric is specified explicitly.

Definition 2.2. If S is a metric space with metric d, Ŝ is a metric space with metric d̂,
and f : S → Ŝ, then f is continuous at p means that

(i) p ∈ S, and

(ii) if ǫ is a positive number, then there is a positive number δ such that if q is in S and
d(q, p) < δ, then d̂(f(q), f(p)) < ǫ.

That f is discontinuous at p means that p ∈ S and f is not continuous at p. If T ⊂ S,
then f is continuous on T means that f is continuous at every element p of T . That f
is continuous means that f is continuous on S (in other words, is continuous at every
element p of its domain).

Examples 2.2. Here are some examples of continuous functions:

(1) f : R → R, x 7→ 3x, is continuous at the number a because, with S = R and Ŝ = R,

d̂(f(x), f(a)) = |f(x) − f(a)| = |3x − 3a| = 3|x − a| = 3 d(x, a) < ǫ

if d(x, a) < δ, where δ = ǫ/3 (or any smaller positive number). f is continuous
because it is continuous at every number a in its domain R.
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(2) f : R → R, x 7→ 7x2, is continuous at the number a because if |x−a| < b (any positive
number), then |x| = |(x − a) + a| ≤ |x − a| + |a| < b + |a|, so

|f(x)−f(a)| = 7|x2−a2| = 7|x+a||x−a| ≤ 7(|x|+ |a|)|x−a| < 7(b+2|a|)|x−a| < ǫ

if |x − a| < δ̄, where δ̄ = ǫ/7(b + 2|a|), and therefore, with S = R and Ŝ = R,
d̂(f(x), f(a)) < ǫ if d(x, a) < δ, where δ = min{b, δ̄} (or any smaller positive number).
f is continuous because it is continuous at every number a in its domain R.

(3) f : R
2 → R, 〈x, y〉 7→ xy, is continuous at 〈a, b〉 because, with S = R

2 and Ŝ = R,

d̂(f(x, y), f(a, b)) = |xy − ab|
= |(x − a)b + a(y − b) + (x − a)(y − b)|
≤ |x − a||b| + |a||y − b| + |x − a||y − b|
=

√

(x − a)2 |b| + |a|
√

(y − b)2 +
√

(x − a)2

√

(y − b)2

≤
√

(x − a)2 + (y − b)2 |b| + |a|
√

(x − a)2 + (y − b)2

+
√

(x − a)2 + (y − b)2

√

(x − a)2 + (y − b)2

=
(

|a| + |b| +
√

(x − a)2 + (y − b)2

)

√

(x − a)2 + (y − b)2

=
(

|a| + |b| + d(〈x, y〉, 〈a, b〉
)

d(〈x, y〉, 〈a, b〉)
<

(

|a| + |b| + c
)

d(〈x, y〉, 〈a, b〉)
(if c is any positive number and d(〈x, y〉, 〈a, b〉) < c)

< ǫ

if d(〈x, y〉, 〈a, b〉) < δ̄, where δ̄ = ǫ/(|a|+ |b|+ c), and therefore d̂(f(x, y), f(a, b)) < ǫ
if d(〈x, y〉, 〈a, b〉) < δ, where δ = min{c, δ̄}. f is continuous because it is continuous
at every element 〈a, b〉 in its domain R.

Theorem 2.1. If S is a metric space with metric d, and S⋆ is a subset of S, then S⋆ is
a metric space with metric d⋆ : S⋆ × S⋆ → R≥0, 〈p, q〉 7→ d(〈p, q〉), which is to say that
d⋆(〈p, q〉) = d(〈p, q〉) if 〈p, q〉 ∈ S⋆.

Convention. The elements of metric spaces are often referred to as ‘points’, even if they
are not points in the geometric sense.

Definition 2.3. If S is a metric space with metric d, and S⋆ is a subset of S, then by a
limit point of S⋆ is meant a point p of S such that if δ is a positive number, then there
is in S⋆ a point q distinct from p such that d(q, p) < δ.
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Definition 2.4. If S is a metric space with metric d, Ŝ is a metric space with metric d̂,
S⋆ is a subset of S, and f : S⋆ → Ŝ, then f(q) approaches L as q approaches p means
that

(i) p is a limit point of S⋆,

(ii) L is a point of Ŝ, and

(iii) if ǫ is a positive number, then there is a positive number δ such that if q is a point
of S⋆ distinct from p, and d(q, p) < δ, then d̂(f(q), L) < ǫ.

Theorem 2.2. If f(q) approaches L as q approaches p, and f(q) approaches L′ as q
approaches p, then L′ = L.

Definition 2.5. If f(q) approaches L as q approaches p, then L is called the limit of f
at p and is denoted by limq→p f(q).

Theorem 2.3. If S⋆ is a subset of the metric space S, Ŝ is a metric space, f : S⋆ → Ŝ,
and p is a point of S⋆ that is also a limit point of S⋆, then f is continuous at p if and
only if f(q) approaches f(p) as q approaches p, which is to say that f(p) = limq→p f(q).

Examples 2.3. In each of Examples 2.2 the point p (= a in (1) and (2), = 〈a, b〉 in (3))
is a limit point of S⋆ (= S in (1), (2), and (3)), and f(p) = limq→p f(q).
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