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1. Silverman’s Bounded Height Theorem

I start my talk by recalling (a version of) Silverman’s Bounded Height Theorem. I would like to
point out immediately that I shall stick to a very special case of his results in this direction: this
is both for clarity and because this shall better fit in the applications that I intend to mention.

Let L denote the Legendre elliptic scheme over P1 \ {0, 1,∞}, essentially defined by

L : y2 = x(x− 1)(x− λ), λ ∈ P1 \ {0, 1,∞}.

If we homogenize the equation with respect to x, y, this represents a surface in P2×P1\{0, 1,∞}
with a map λ to P1\{0, 1,∞}, whose fiber above a point c is the elliptic curve Lc with the written
Weierstrass equation after substitution λ→ c.

We may view this also as an elliptic curve defined over the rational function field field Q(λ).

Suppose now we have points σ1, . . . , σr on this curve, with coordinates which are algebraic
functions of λ. 1

EXAMPLE: σ = (2,
√
2(2− λ)), a point with constant abscissa. It is in fact well-defined only

on the curve B : η2 = 2− λ.

These algebraic functions may be not well-defined on P1, and for this reason we extend the
base P1 \{0, 1,∞} to an affine smooth curve B (defined e.g. over Q) with a rational map denoted
also λ : B → P1 \ {0, 1,∞}.

Then we consider the (fibered) product L ×P1\{0,1,∞} B =: LB . Note that this is defined by
the same equation as above, the only difference being that λ is a function on B rather than P1.

This now has a map π : LB → B with fibers Lb = π−1(b).

In this larger realm, the points σi may be viewed as sections (of π) σi : B → LB . So each σi
associates to a point b ∈ B a point σi(b) ∈ Lb. 2

We further suppose that the sections as well are defined over Q.

As mentioned, the σi are in fact points in the Mordell-Weil group L(Q(B)) over the function
field of B, and we now assume that they are independent, i.e. if m1, . . . ,mr ∈ Z are integers not
all zero then

m1σ1 + . . .+mrσr 6= 0,

which also means that the sum is not identically (or generically) zero on B.
It is a natural question, which indeed arises in several contexts, to ask:

Question: For which points b ∈ B(Q) do the values σ1(b), . . . , σr(b) remain independent on Lb?

- Work of Néron, using version of Hilbert’s Irreducibility Theorem (but with additional argu-
ments from the Mordell-Weil theorem) proved that the independence of the σi(b) holds as soon
as λ(b) lies in P1(Q), but outside a certain ‘thin’ set of P1(Q).

We skip here precise definitions and only say that such sets may be proved to be actually thin,
i.e. in a sense ‘sparse’. However, (i) they may be infinite, and (ii) the result applies at most to
points b of bounded degree over Q. So, this does not say much for general algebraic points of B.

Now, J. Silverman around 1980 proved results which as a very special case imply e.g.

Theorem 1.1 (Silverman 1981). The set of b ∈ B(Q) for which σ1(b), . . . , σr(b) are dependent
on Lb has bounded height.

1 There are too few points with coordinates in Q(λ): they are (0, 0), (1, 0), (λ, 0) and the point at infinity.
2 Sometimes we shall skip such precisions and speak of values of σ at λ = c ∈ C.
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I take it for granted the concept of height here; suffices it to say that a well-known (easy) theo-
rem of Northcott implies that there are only finitely many points of bounded degree
and bounded height.

So in particular this substantially strengthens Néron’s result mentioned before.
An interesting statement is obtained already for r = 1, and we shall soon mention applications

in joint work with Masser; we have

Corollary 1.2. If σ : B ∈ LB is a non-torsion section, then for b ∈ B(Q), σ(b) may be torsion
at most for a set of points of bounded height.

EXAMPLE: The point (2,
√
2(2− c)) on the curve y2 = x(x− 1)(x− c) may be torsion only

for a set of algebraic numbers c of bounded height. (This set is provably infinite.)

It is now a few years since Masser asked what kind of supplementary conclusion we may draw
on prescribing simultaneously that two sections are torsion. In a series of papers we succeeded
to obtain a number of finiteness results in this direction, of which a rather special case is the
following

Theorem 1.3 (Masser, Z. ≈ 2010). Let u 6= v be distinct complex numbers outside {0, 1}. Then
there are only finitely many c ∈ C for which (u,

√
u(u− 1)(u− c)) and (v,

√
v(v − 1)(v − c)) are

both torsion on Lc.

Silverman’s theorem is crucial in more than one aspect of our proof of this theorem.
This is the starting point of further joint work with Masser, in which we considered general

sections to
- a square of an elliptic pencil, e.g. Lλ × Lλ,
- a produce of non-isogenous elliptic pencils, e.g. Lλ × L2λ,
- a pencil of simple abelian surfaces.
These cases presented analogies but also different aspects. They are cases of the so-called

Pink’s conjectures.

Remark 1.4. Other results. It is important to remark that for brevity and simplicity I have
stated only very special corollaries of other highly significant results by Silverman. Indeed, he
worked (also with Tate) with general families of abelian varieties, over an arbitrary base B,
comparing ‘functional (canonical) heights’ with ‘specialized (canonical) heights’.

His results consider also the ‘constant part’ and take stronger form when the Néron-Severi
group of B is cyclic, which is e.g. the case of curves.

- Manin and Demianenko had proved results in a somewhat similar spirit, but as far as I
know only for constant abelian varieties and points defined over a number field (again under the
above assumption on NS and a slightly different independence assumption - see also below).

- Silverman’s Theorem has inspired a wealth of research, of which I shall succeed to mention
only a very small part.

Also, beyond the toric analogues which I shall soon discuss, there are analogous height bounds
in the context of algebraic dynamics, some of which have been obtained by Silverman himself
(also jointly with other authors, e.g. Call and Kawaguchy).

Again in the context of dynamics, the above theorem has been proved with other methods by
DeMarco, Wang, Ye, whereas a dynamical analogue for the family x2 + λ was dealt with by
M. Baker, DeMarco, with subsequent extensions by Tucker, Ghioca, Hsia.

And P. Habegger proved a rather delicate bounded-height result when B has arbitrary di-
mension and there are at least dimB sections, with a bound holding on a certain open subset of
B. He used this to derive a finiteness result like the above one, but for three points defined on a
surface.

2. Algebraic tori

The said results by Silverman concerned abelian schemes, where applications were more
numerous. But one could naturally think of other (commutative) group-varieties, the simplest
case being that of algebraic tori Gnm.

Here two important differences are:
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(a) There are no families: on the one hand, this is analogous to ‘isotrivial’ families in the
abelian case, which represent an obstruction for Silverman’s BH theorem (though not for other
of his results); on the other hand, this leads to simplifications with respect to a.v.

(b) The height behaves in a somewhat worse way: indeed the height is a quadratic form
on a.v., but is less regular on tori → leads to difficulties.

As to (a), we still have the liberty provided by the sections, i.e. we can consider the ‘constant’
family

T = Gnm ×B, π = π2 : T → B,

(where we stick again to curves B for the moment) and sections σ1, . . . , σr : B → T , assumed to
be (generically) independent, i.e.

For integers a1, . . . , ar not all zero, we have σa11 · · ·σarr 6= 1.

Remark 2.1. We remark that here we could require the stronger independence modulo nonzero
constants, sometimes a very important difference. Such stronger assumption appears in the
quoted work by Manin-Demianenko.

Already the case n = 1 is not obvious. We can view σ := (σ1, . . . , σr) as a single section
σ : B → Grm × B, and then the first projection yields a map σ∗ := π1 ◦ σ : B → Grm and a
subvariety X = σ∗(B) ⊂ Grm (at most a curve for B a curve).

Dependence and algebraic subgroups: A dependence at b ∈ B may be seen as an inter-
section point x = σ∗(b) ∈ X ∩ H, where H is a proper algebraic subgroup of Grm, defined by
xa11 · · ·xarr = 1.

The generic-independence assumption says that X is not contained in any such H and the
stronger independence mod constants means that X is not contained in any translate gH.

There are in general infinitely many dependent points (i.e. in
⋃
H properX ∩H). After sparse-

ness results by Masser, in joint work with Bombieri and Masser we proved in 1999 that

Theorem 2.2 (Bombieri-Masser-Z. 1999). If σ1, . . . , σr are independent modulo constants then
h(x) is bounded for x ∈ X ∩

⋃
dimH≤r−1H.

Here the union is taken over all proper alg. subgroups. Note that h(x) � 1 implies h(b) � 1
if x = σ1(b).

The strong-independence assumption (i.e. mod. constants) may be seen to be necessary.
This result was important in deducing a finiteness when we have double dependence, i.e. we

intersect with algebraic subgroups of codimension 2:

Theorem 2.3 (Bombieri-Masser-Z. 1999). If σ1, . . . , σr are independent modulo constants then
the set X ∩

⋃
dimH≤r−2H is finite.

Improvements: I shall not pursue on this much further, but only say that in the last theorem
the assumption may be relaxed to mere independence; this was first proved by Maurin (after
special cases by BMZ), and is the case of curves of the so-called Zilber’s conjecture (2002).

Elliptic case: An extension to this theorem to an elliptic context, containing as a special
case Thm. 1.3, has been recently obtained by Barroero and Capuano.

Question: What happens for dimB > 1 ?

Again, we may consider the variety X, and dimX ≤ dimB.
Now to obtain Bounded Height we must at least impose as many dependencies as dimB. It

turned out in examples worked out with Bombieri and Masser that this condition together
with (strong) independence is not yet sufficient.

We formulated a Bounded Height Conjecture asserting that BH should hold on a certain sub-
set X0 ⊂ X, which we proved to be Zariski-open (but sometimes empty, EXAMPLES in G4

m:
products of two lines in G2

m, BH does NOT hold).
We omit definitions and only say that the conjecture was later proved by Habegger, and led

to a second proof of Maurin’s Theorem in joint work with Bombieri, Habegger and Masser.
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3. Pell’s equations in polynomials

In the abelian case again, Silverman’s theorem was most crucial in the proofs by Masser
and myself of special cases of the so-called Pink’s conjectures, which may be seen as a kind of
Manin-Mumford for abelian families. An instance is the two points-theorem mentioned before.

Also, rather concretely, this context is related to a polynomial variant of Pell’s equation, studied
already by Abel (1826), and I shall use this connection to illustrate.

For instance, consider the (Pell) equation

x2 − (t4 + t+ 1)y2 = 1,

to be solved in complex polynomials x(t), y(t) 6= 0; this polynomial case is different from the clas-
sical one with integers, where the simplest necessary conditions for solvability are also sufficient;
indeed, it can be shown that this equation is not solvable. But it is in the case

x2 − (t4 + t)y2 = 1, where we can take x(t) = 2t3 + 1, y(t) = 2t.

Question: For which c ∈ C is x2 − (t4 + t+ c)y2 = 1 likewise solvable ?

We say that the relevant polynomial is Pellian in that case.
Well, it is not too difficult to show this cannot be done identically, but it can be done for

infinitely many cs, actually all being algebraic. Examples: c = 0, 1/2, ζ3/2, ...). Less clear is that
these numbers have bounded height; actually, this follows again from Silverman’s theorem.

Let us briefly explain the link: associated to the Pell equation is the family of (genus 1) curves

Hλ : u2 = t4 + t+ λ.

There are two points at infinity (in a smooth model), the poles of t, denoted ∞+,∞−. Their
difference

δ = δλ :=∞+ −∞−
is a divisor of degree 0, and thus defines a point (denoted again δλ) in the Jacobian Jλ of Hλ. So
we have a section δ of a family of Jacobians.

Now, it is a well-known fact since long ago that:
Criterion: Pell is solvable for λ = c ∈ C if and only if δc is torsion on Jc.

Then the above corollary of Silverman’s theorem (applied to the present family of Jacobians,
which may be shown to satisfy certain necessary assumptions) immediately yields what stated.

Also, like for a previous case, Masser and I obtained some finiteness, for other Pell’s equations,
this time in higher genus. For instance we have:

Theorem 3.1. (Masser, Z., 2013) There are only finitely many c ∈ C such that the Pell’s
equation x2 − (t6 + t+ c)y2 = 1 is solvable in nonzero polynomials.

Again, we have a section of a family of Jacobians, and again Silverman’s theorem yields the
crucial information that the relevant numbers c (necessarily algebraic) have bounded height. This
ingredient allows further steps in our proof method to work. (Note that this time the Jacobians
have dimension 2 > 1, and this is the main reason motivating finiteness - we do not pause here
on a certain a bit subtler point.)

4. Algebraic coefficients versus transcendental coefficients

- Transcendental coefficients: While the height theorems above implicitly require alge-
braic quantities, the finiteness results may be formulated over C, as was done for instance by
Pink for his already mentioned conjectures. For instance, one could ask about the solvability in
polynomials of the Pell’s equations inside the family

y2 − (t6 + πt2 + et+ λ)x2 = 1, x, y ∈ C[t] \ C.
- Further parameters: Another possible generalization of the context is obtained by intro-

ducing further parameters, in addition to λ, and then asking for the subvarieties of the parameter-
space where the Pell’s equation is solvable; for the present case of genus 2, the expectation is
that there are only finitely many hypersurfaces where this can happen. 3

3 We tacitly assume that certain natural obstructions, which can be classified, are ruled out.
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However these two issues are strongly related, because independent transcendentals can be
viewed as new variables. (For instance, the displayed equation corresponds to a problem in 2 or
3 dimensions according as π, e are alg. dependent or not.)

Specializing parameters and problems which arise: These extensions to several vari-
ables might appear innocuous, or even easier, as often happens when we go from number fields to
function fields. For instance, one might think of specializing the new variables in order to reduce
to the (known) algebraic case. In principle this should be a sensible attempt, especially since the
proof pattern that we adopted does not fully work outside Q (for instance, Northcott’s theorem
is missing, but there are also further obstacles).

However it turned out that troublesome obstacles appear in trying to prove that specialization
does not lead to degenerate cases. (Together with Bombieri and Masser we had already exper-
imented similar difficulties in trying to extend Maurin’s theorem to complex curves, which we
eventually did.)

For instance, if we want to exclude infinitely many Pellian polynomials t6 + πt2 + t+ cn, then
cn would be certain algebraic functions of π, and then we could try to specialize π, seen as a
variable, e.g. to π = 2, obtaining Pellian polynomials t6 + 2t2 + t+ cn(2).

Now two difficulties arise:
(i) cn could be undefined at (or, rather, above) 2;
(ii) the values cn(2), n = 1, 2, . . ., could make up a finite set (and then no contradiction would

appear in applying the known algebraic case).

In other words, it could happen that the torsion curves which arise escape towards the
boundary (and fail to have infinite intersection with any prescribed curve defined over Q).

Eventually, in recent collaboration with P. Corvaja and Masser, we have overcome both
issues; one of the main tools is a uniform version of Silverman’s theorem, i.e. with a base curve
B which varies (also defined over a number field of any degree), taking into account the height
of equations which define it. More precisely, here is a special instance:

Uniform Silverman: Let σ be a section of a family of a.v over a surface S/Q, covered by a
family of curves Bθ = π−1(θ), fibers of a morphism π of S to a curve. Then, if σ restricted to Bθ
is non-torsion, we have h(b) ≤ c(h(θ) + 1) for any point b ∈ Bθ such that σ(b) is torsion (where
c depends only on S, σ, π).

This uniform version (and more) may be obtained on following closely Silverman’s ideas. Then,
we apply this result to families of curves of bounded height, defined over cyclotomic fields of
growing degree. This forces certain Unlikely Intersections to stay inside a suitable compact set,
and this allows other arguments to work. We skip any other detail here.

5. Bounded Height with a weaker condition ?

In the last part of my talk I shall discuss a possible generalization of Silverman’s theorem,
which is still unknown except for the toric case, which has been worked out in recent joint work
with F. Amoroso and Masser.

Let us go back to the Jacobian family

Jλ = Jacobian of Hλ : u2 = t6 + t+ λ

which we have met in connection with the Pell’s equation x2 − (t6 + t+ λ)y2 = 1.
We had a section δ whose value at λ = c is defined as the class in Jc of the divisor ∞+ −∞−.

We have remarked that solvability of Pell for λ = c amounts to δc being torsion on Jc, and
these cs have bounded height by Silverman’s theorem.

A new condition. Now, it is of some interest, also from the Pell viewpoint, to ask for the c
such that some multiple nδc is not necessarily 0 but rather, inside a prescribed proper subvariety
of Jc, e.g. inside Hc (thought as already embedded in Jc e.g. by x 7→class of (x)− (∞+)).

This condition is much weaker than being torsion, but still we do not expect it to be generically
satisfied, except possibly for certain fixed integers n. Also, for any given c, it may be satisfied by
at most finitely many n (Mordell-Lang, but Chabauty suffices).
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Remark 5.1. Note that the condition that a multiple of a point lies in a curve inside its Jacobian
is quite familiar and natural in Diophantine Geometry. And one could naturally work also with
linear combinations of several sections.

Concerning the Pell aspect, these numbers c are those such that the ‘quasi-Pell’ equation
x2 − (t6 + t+ c)y2 = linear polynomial, is solvable.

For this specific example, let us consider only the n > 3 (since for n = 3 the condition holds
identically).

The (vague) question: What can be said about the set E of such c s ?

Inspection suggests that it is not even obvious that E does not exhaust Q, in spite of the fact
that such a fact (i.e. E = Q) would seem quite unexpected.

Indeed, V. Flynn has proved (by a variant of Chabauty’s method) that the complement Q \ E
is infinite (actually a more precise statement).

However his (ingenious and somewhat delicate) method is not guaranteed to work in general.
We wonder about the answer to

Question: Does E have bounded height ?

Flynn’s result does not answer this, which, if true, this would represent a sharpening of Silver-
man’s theorem, in a direction different from those already explored.

A toric version. Together with Amoroso and Masser we have worked out a toric analogue.
Let me state a concrete polynomial special case of this.

Let f1, . . . , fr ∈ Q[λ], a1, . . . , ar ∈ Q∗.
We consider the hyperplane H : a1x1 + . . .+ arxr = 0 inside Grm and the section

σ(λ) = (f1(λ), . . . , fr(λ)).

We are interested in the set

E1 = {c ∈ Q : [n]σ(c) ∈ H for some n such that the condition does not hold identically}
In other words, E1 consists of all the roots of the equations in λ

a1f1(λ)
n + . . .+ arfr(λ)

n = 0, n = 1, 2, . . . .

however excluding possible degeneracies coming from identities.
Now, it is not too difficult, and a pleasant exercise (not obvious to me), to prove that Q \ E1

is infinite, at least assuming that no two of the polynomials are proportional.
Our result confirms actually much more, namely the sought bounded height:

Theorem 5.2. (Amoroso, Masser, Z.) On the above assumptions, the set E1 has bounded height.

Even the case f1 = λ, f2 = 1− λ, f3 = 1 seems not obvious (here one has to restrict to n ≥ 2);
it had been dealt with by Beukers in the context of a completely different problem.

We can in fact prove more precise results, and more generally for any number of sections.

Our methods are rather involved, with constructions of auxiliary functions and a combinatorial
analysis which we have found intricate. Wronskians play a role, and this reminds of other proofs
in Dioph. Appr. and Transcendence.

Indeed, there are several direct applications to finiteness in diophantine problems.

No analogy is in (my) sight which should enable to treat the abelian case; taking into account
certain similarities between our proof and proofs of Thue’s and related theorems, possibly the
version by Bombieri of Vojta’s proof of the Mordell conjecture could suggest a good approach.

With this we conclude our talk, leaving these questions for the interested ones in the audience.
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