WARING'S PROBLEM FOR POLYNOMIALS IN POSITIVE CHARACTERISTIC

JOSÉ FELIPE VOLOCH

ABSTRACT. Rough notes of talk at Silvermania.

Let R be a ring (or a semiring) and n > 1 a fixed integer. Waring's problem in this setting is to determine the least integer s for which every element of R is a sum of s n-th powers of elements of R, if such an integer exists. The classical Waring's problem is what we call Waring's problem for \mathbf{N} . For n odd, what we call Waring's problem for \mathbf{Z} is usually referred to as the "easier" Waring's problem. In this note, we consider Waring's problem for R = k[t], where k is an algebraically closed field of characteristic p and we denote the least s as above by v(p, n). This problem has been extensively studied ([C, LW] and references therein). For p = 0, it's known that $\sqrt{n} < v(0, n) \le n$ ([NS]). Our focus here is on p > 0. If $n = n_0 + n_1 p + \cdots + n_k p^k$ is the base p expansion of n (i.e. $0 \le n_i < p$), then Vaserstein and also Liu and Wooley [Va, LW] showed that $v(p, n) \le \prod (n_i + 1)$. We improve this bound for some values of n.

Note that, if s is the smallest integer for which there exists $x_1, \ldots, x_s \in k[t]$ with $\sum x_i^n = t$, then s = v(p, n), simply by replacing t by a polynomial in t. It is easy to see that v(p, 2) = 2, p > 2, that v(p, n) > 2 for all n > 2, that $v(p, d) \leq v(p, n)$ if d|n and that v(p, n) does not exist if p|n. i The following proposition for $n = p^m + 1$ is due to Car, [C], Prop. 3.2. We give a slightly different proof.

Proposition 1. If $n|(p^m + 1)$ for some m, then v(p, n) = 3.

Let us write $q = p^m$. An identity $\sum x_i^{q+1} = t$ gives $\sum (x_i^{(q+1)/n})^n = t$, so we need only consider n = q+1. Let $x, y \in k$ satisfy $x^{q+1} + y^{q+1} + 1 = 0$, then

$$(xt + x^{q^2})^{q+1} + (yt + y^{q^2})^{q+1} + (t+1)^{q+1} = ct,$$

where $c = x^{q^3+1} + y^{q^3+1} + 1$ and can be chosen to be nonzero by an appropriate choice of x, y. Replacing t by t/c completes the proof.

We remark that the solutions to $x^{q^3+1}+y^{q^3+1}+1 = x^{q+1}+y^{q+1}+1 = 0$ are in \mathbf{F}_{q^2} . We conjecture that v(p, n) > 3 in the cases not covered by the above proposition.

Theorem 1. If p > 3 and $n|(2p^m + 1)$ for some m, then $v(p, n) \leq 4$.

For the proof, see [V].

The next two results are easy.

Theorem 2. (Lucas' theorem) For prime p and non-negative integers m and n such that

, ,

$$m = m_k p^k + m_{k-1} p^{k-1} + \dots + m_1 p + m_0,$$

$$n = n_k p^k + n_{k-1} p^{k-1} + \dots + n_1 p + n_0,$$

$$0 \leq m_i, n_i < p$$

we have

$$\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \pmod{p}.$$

In particular, $\binom{n}{m} \not\equiv 0 \pmod{p}$ if and only if $m_i \leq n_i, i = 0, \dots, k$.

Theorem 3.

$$\sum_{\zeta \in \mu_n} \zeta (t+\zeta)^n = n^2 t$$

More generally

$$\sum_{\zeta \in \mu_m} \zeta^{1-n} (t+\zeta)^n = nmt + \sum_{j=1}^{[(n-1)/m]} m \binom{n}{mj+1} t^{mj+1}$$

We analyze when the previous identity for m = 4 has degree one on the RHS.

Theorem 4. If p is odd, $n \geq 5$ and (p,n) = 1 then $\binom{n}{4j+1} \equiv 0 \pmod{p}$, $j = 1, \ldots, \lfloor (n-1)/4 \rfloor$ if and only if $p \equiv 3 \pmod{4}$ and $n = 1 + p^i + p^k, 1 + p^k, 1 + 2p^k$ and i, k odd. For these values of n, $v(p,n) \leq 4$.

If $p \equiv 1 \pmod{4}$ and, for some $i > 0, n_i \neq 0$, then $p^i \equiv 1 \pmod{4}$ so $p^i = 4j + 1$ contradicts the hypothesis. This shows that $p \equiv 3 \pmod{4}$. The same argument shows that $n_i = 0$ for i > 0, even. If, for some $i > 0, n_i > 2$, then $3p^i = 4j + 1$ contradicts the hypothesis. Also $n_0 = 1$, since $n_0 \neq 0$ by hypothesis and, otherwise, $p^k + 2 = 4j + 1$ contradicts the hypothesis. If $n_k = 2$, then $n_i = 0, 0 < i < k$ for otherwise, $2p^k + p^i = 4j + 1$ contradicts the hypothesis. So, if $n_k = 2$ then $n = 2p^k + 1$. Assume now that $n_k = 1$. If $n_i = 0, 0 < i < k$, then $n = p^k + 1$. There is at most one i, 0 < i < k with $n_i > 0$ for otherwise,

 $\mathbf{2}$

 $p^k + p^i + p^{i^\prime} = 4j+1$ contradicts the hypothesis. So we can assume there is exactly one such i and $n_i = 1$, for otherwise, $p^k + 2p^i = 4j + 1$ contradicts the hypothesis. So, $n = 1 + p^i + p^k$.

We note that, if $n = 1 + p^i + p^k$, *i*, *k* odd then the representation of t as a sum of 4 n-th powers is realized by polynomials with coefficients in \mathbf{F}_{n^2} .

Corollary 1. Under GRH, for any prime $p \equiv 3 \pmod{4}$, the set of primes ℓ with $v(p, \ell) < 4$ has density one.

See [Sk] for an argument, given for p = 2 which readily generalizes for all p, that shows, under a conjecture of Erdös, that the set of primes diving some $1 + p^i + p^k$ is of density one. It can be modified so one can only look at i, k odd. Finally, the aforementioned conjecture of Erdös is shown to follow from GRH in [FM].

It is likely that the set of integers dividing some $1 + p^i + p^k$ has positive density. For p = 2, numerically, the density is about 0.38.

Here is a list of open questions. I have formulated them in such a way that my guess is that they all have positive answers but I am not confident enough to make any of them a conjecture.

- (1) Is v(0,n) = n/2 + O(1)?
- (2) Is $v(p,n) \le (\prod (n_i + 1))/2 + O(1)$? (3) Is $\limsup_n v(p,n) = \infty$?
- (4) Is $v(p, p^k 1) = p^k/2 + O(1)?$

References

- M. Car, Sums of (p^r+1) -th powers in the polynomial ring $\mathbf{F}_{p^m}[T]$, J. Korean [C]Math. Soc. 49 (2012) 1139–1161.
- [FM] A. M. Felix and M. R. Murty, On a conjecture of Erdös. Mathematika 58 (2012), no. 2, 275–289.
- [LW] Y.-R. Liu and T. Wooley, The unrestricted variant of Waring's problem in function fields, Funct. Approx. Comment. Math., 37 (2007) 285–291.
- [NS] D. J. Newman and M. Slater, Waring's problem for the ring of polynomials, J. Number Theory **11** (1979) 477–487.
- [Sk] M. Skalba, Two conjectures on primes dividing $2^a + 2^b + 1$, Elemente der Mathematik **59**, (2004) 171–173.
- [Va] L. Vaserstein, Ramsey's theorem and the Waring's Problem for algebras over fields, Proceedings of the workshop on the arithmetic of function fields, Ohio State University, Walter de Gruyter, 1992, pp 435–442.
- [V]J. F. Voloch, *Planar surfaces in positive characteristic*, São Paulo J. of Math. Sciences, to appear.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TX 78712 USA

E-mail address: voloch@math.utexas.edu