The arithmetic dynamics of correspondences

Patrick Ingram

Colorado State University

Silvermania 2015

Arithmetic dynamics

(Arithmetic) dynamics

Let K be a (number) field, X/K a variety, and $f: X \to X$ a morphism. Describe

$$\mathscr{O}_{f}^{+}(P) = \{P, f(P), f^{2}(P) = f \circ f(P), ...\}$$

and maybe

$$\mathcal{O}_{f}^{-}(P) = \{P, f^{-1}(P), f^{-2}(P), \ldots\}.$$

Size of orbit, convergence, local behaviour at fixed points, behaviour of critical points, etc...

The canonical height

If X is projective, L is an ample \mathbb{R} -divisor, and $f^*L \sim \alpha L$ for some real $\alpha > 1$, the Call-Silverman canonical height satisfies

$$\hat{h}_{X,L,f}(P) = h_{X,L}(P) + O(1)$$
$$\hat{h}_{X,L,f}(f(P)) = \alpha \hat{h}_{X,L,f}(P)$$
$$\hat{h}_{X,L,f}(P) = 0 \iff P \text{ has finite orbit.}$$

In particular, if $K = \mathbb{Q}$ and $f^n(x) = a_n/b_n$, then

$$\log \max\{|a_n|, |b_n|\} = d^n \hat{h}_f(x) + O(1).$$

Correspondences

Many-valued dynamics

Rather than iterate

$$y = x^3 + 1,$$

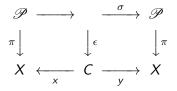
what if we iterate

$$y^2 = x^3 + 1?$$

The path space

Let X/K be a variety (\mathbb{P}^1 for most of this), and let $C \subseteq X^2$ have both coordinate projections finite and surjective.

There exists a K-scheme $\pi : \mathscr{P} \to X$ and a finite morphism $\sigma : \mathscr{P} \to \mathscr{P}$ such that...



 \mathscr{P} parametrizes paths defined by iterating the correspondence *C*, starting at the point marked by π .

The path space

If C is the graph of a morphism f, then $\mathscr{P} \cong X$ with $\sigma = f$.

If C: x = f(y), then $\mathscr{P} \to X$ describes "inverse image trees."

In general, you can think of $\pi^{-1}(x) \subseteq \mathscr{P}$ as a tree, a probability space, and/or a totally disconnected compact Hausdorff space.

In some cases this is easy to construct. For instance, if $X = \mathbb{A}^1$ and C : F(x, y) = 0, then $\mathscr{P} = \text{Spec}(\mathbb{R})$ with

$$R = K[x_0, x_1, ...]/(F(x_i, x_{i+1}) : i \ge 0).$$

An annoyance

 $\sigma:\mathscr{P}\to\mathscr{P}\text{ is an algebraic dynamical system encapsulating the correspondence, but }\mathscr{P}\text{ is not in general a variety.}$

The property $X(\overline{K}) = \bigcup_{[L:K]<\infty} X(L)$ of varieties is quite useful!

Let $C: y^2 = x^3 + 1$. For $P \in \mathscr{P}(K)$, we can make S large enough so that P is supported on S-integral points. This means that P is finitely supported.

We have $\bigcup_{[L:K]<\infty} \mathscr{P}(L)$ consisting in just finitely supported paths... but this is certainly not the case for the typical element of $\mathscr{P}(\overline{K})$.

The canonical height

Polarized correspondences

Now assume X is projective.

We say that C is *polarized* if there is an ample $L \subseteq Pic(X) \otimes \mathbb{R}$ and a real $\alpha > 1$ with $y^*L \sim \alpha x^*L$.

With $X = \mathbb{P}^1$ and C : g(y) = f(x), the condition comes down to $\deg(g) < \deg(f)$.

A canonical height

Theorem (I. 2014)

Given a polarized correspondence, there exists a $\hat{h}_{X,L,C}$: $\mathscr{P}(\overline{K}) \rightarrow$ such that...

1. $\hat{h}_{X,L,C}(P) = h_{X,L} \circ \pi(P) + O(1)$

2.
$$\hat{h}_{X,L,C} \circ \sigma(P) = \alpha \hat{h}_{X,L,C}(P)$$

3.
$$\hat{h}_{X,L,C}(P) = 0$$
 if P is finitely supported.

The converse to the last claim holds true on

$$\bigcup_{[L:K]<\infty}\mathscr{P}(L),$$

but this is generally a small subset of $\mathscr{P}(\overline{K})$.

Comments on the canonical height

Call $x \in X(\overline{K})$ constrained if there exists a finitely supported path P with $\pi(P) = x$ (i.e., if the orbit of x is not an honest tree).

As a corollary to the above, the set of constrained points is a set of bounded height.

Comments on the canonical height

Note that for $C: y^2 = x^3 + 1$ we have

$$\bigcup_{[L:K]<\infty}\mathscr{P}(L)\subseteq \{P\in\mathscr{P}(\overline{K}):\hat{h}(P)=0\}.$$

Of course, those are all finitely supported paths.

If $\hat{h}(P) = 0$ and $P \in \mathscr{P}(L)$ for some $[L : K] < \infty$, then P is finitely supported.

On the other hand, every path P for $y^2 = x^3$ with $\pi(P) = -1$ has $\hat{h}(P) = 0$, and none is finitely supported.

The restriction to fibres

Note that for each $a \in X$, $\pi^{-1}(a) \subseteq \mathscr{P}$ is naturally a compact Hausdorff space under the tree topology, with a Borel probability.

Theorem (I. 2014)

For any $a \in X(\overline{K})$, $\hat{h}_{X,L,C}$ is continuous and measurable on $\pi^{-1}(a)$. In particular,

$$\begin{split} \min_{\pi(P)=a} \hat{h}_{X,L,C}(P) &\leq \mathbb{E}(\hat{h}_{X,L,C}(P)|\pi(P)=a) \\ &\leq \max_{\pi(P)=a} \hat{h}_{X,L,C}(P) \end{split}$$

all make sense.

Note: Autissier's canonical height for correspondences turns out to be the middle thing.

Local heights

Recall that the height of $\alpha \in K$ is defined by

$$h(\alpha) = \sum_{\nu \in M_{\mathcal{K}}} \log^{+} |\alpha|_{\nu} \frac{[\mathcal{K}_{\nu} : \mathbb{Q}_{\nu}]}{[\mathcal{K} : \mathbb{Q}]}.$$

Working over \overline{K} introduces some difficulties.

Gubler introduces a measure μ on $M_{\overline{K}}$ such that

$$h(\alpha) = \int_{M_{\overline{K}}} \log^+ |\alpha|_v d\mu(v).$$

Local heights

Theorem (I. 2014)

There exist local height functions $\lambda_{X,L,C} : \mathscr{P} \times M_{\overline{K}}$ such that

$$\hat{h}_{X,L,C}(P) = \int_{M_{\overline{K}}} \lambda_{X,L,C}(P,v) d\mu(v)$$

for $P \notin \operatorname{Supp}(L)$.

Note that "local height function" needs to be re-defined in order to make sense on something that's not a variety!

Specialization

Theorem (Silverman 1983?)

For a section P of an elliptic surface $\mathcal{E} \to B$, we have

$$\hat{h}_{\mathcal{E}_t}(P_t) = \left(\hat{h}_{\mathcal{E}}(P) + o(1)\right)h_B(t)$$

where $o(1) \rightarrow 0$ as $h_B(t) \rightarrow \infty$.

Call-Silverman proved the analogue for families of dynamical systems.

Specialization

Theorem (I. 2014)

For a family of correspondences C on $X \rightarrow B$, and a path P with $\pi(P) : B \rightarrow X$, we have

$$\hat{h}_{C_t}(P_t) = \left(\hat{h}_C(P) + o(1)\right) h_B(t)$$

For instance, if $\hat{h}_{\mathcal{C}}(P) > 0$, the set of $t \in B$ with P_t finitely supported is a set of bounded height.

Thank you.

Critical orbits

In single-valued dynamics, the orbits of critical points are (unsurprisingly) important.

A morphism $f : \mathbb{P}^1 \to \mathbb{P}^1$ is PCF if and only if its critical points all have finite (forward) orbit.

Conjecture (Silverman 2010)

$$h_{M_d}(f) \gg \ll h_{\operatorname{Crit}}(f) := \sum_{c \in \operatorname{Crit}(f)} \hat{h}_f(c),$$

once Lattés maps are excluded.

Critical orbits

Theorem (I. 2011, 2013)

This is true for polynomials on \mathbb{P}^1 , and for a class of maps generalizing polynomials on \mathbb{P}^N . In fact,

$$h_{M_d}(f) = h_{\operatorname{Crit}}(f) + O(1)$$

if you completely re-define both sides.

Theorem (Benedetto-I.-Jones-Levy 2014)

The PCF points form a set of bounded height in the moduli space M_d of rational functions of degree $d \ge 2$, once Lattés examples are excluded.

A critical point for the correspondence C will be the x-coordinate of any point at which x or y ramifies.

Call *C* post-critically constrained (PCC) iff for every $c \in Crit(C)$, there exists a finitely supported $P \in \mathscr{P}$ with $\pi(P) = c$.

E.g.,
$$y^2 = x^d + 1$$
 whenever d is odd.

Critical height

Theorem (I. 2014)

For C: g(y) = f(x), with g, f polynomials,

$$h_{\text{Weil}}(C) = h_{\text{Crit}}(C) + O(1).$$

Theorem (I. 2014)

Over \mathbb{C} , with setup as above, the correspondences for which every critical point admits a bounded path form a compact subset of modull. space.

Theorem (I. 2014)

In residue characteristic 0 or p > d, there are no algebraic families of PCC correspondences of the above form.

Thank you.

The action of Galois

Arboreal Galois representations

For $f(z) \in K(z)$ and $x \in K$, define $T \approx \mathcal{O}_f^-(x)$ to be the preimage tree. Consider

$$ho_{f,x}: \mathsf{Gal}(\overline{\mathsf{K}}/\mathsf{K})
ightarrow \mathsf{Aut}(\mathsf{T})$$

by the action on nodes in the tree

When is this (nearly) surjective?

Expanding the arboretum

Let C be a correspondence on X, defined over K, and let $\pi : \mathscr{P} \to X$ be the space of paths.

Since \mathscr{P} is a *K*-scheme, there is a natural action of $G = \text{Gal}(\overline{K}/K)$ on $\pi^{-1}(x) \subseteq \mathscr{P}(\overline{K})$ for any $x \in X(K)$.

The graph structure on $\pi^{-1}(x)$ is *K*-rational, and so we have

$$\rho_{C,x}: G \to \operatorname{Aut}(\mathsf{T}),$$

where T is $\pi^{-1}(x)$ as a directed graph (which might not be a tree!!).

The image of Galois

It is natural to ask when $\rho_{C,x}$ is (nearly) surjective.

Conjecture (Automatic generalization of folklore)

The image of $\rho_{C,x}$ has finite index in Aut(T), except for sometimes.

The conjecture is true (but stupid) for C : y = f(x) (forward orbits).

Jones, Hindes have proven various cases for C : x = f(y) (backward orbits).

Some kind of result

Theorem (I. 2014)

Let K be a complete, non-archimedean field, let $f, g \in K[x]$ have good reduction and deg $g < \deg f$ both relatively prime to the residue characteristic of K, and let C : g(y) = f(x). Then there is a Galois-equivariant bijection between

 $\{P \in \mathscr{P}(\overline{K}) : |\pi(P)| > 1\}$

and the corresponding set for $y^{\deg(g)} = x^{\deg(f)}$.

Kummer theory then gives some description of the action of Galois.

This action is much smaller than one would hope, though, over a number field, especially when gcd(deg(f), deg(g)) > 1.