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• Brief overview:                           
families of elliptic curves

• Connections with dynamics

• pictures

• Rationality of canonical heights?       
(work in progress with Dragos Ghioca)
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ĥEt(Pt) = hX,DP (t) + O(1)

lim
hX(t)!1
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Silverman’s VCH I, II, III, 1992-1994

ĥEt(Pt) =
X

v2MK

�̂Et,v(Pt)

satisfy

The components in the local decomposition

(1)

ˆ�Et,v(Pt) =
ˆ�E,t0(P ) log |u(t)|v + continuous correction term

(2) correction term ⌘ 0 for all but finitely many v 2 MK

for t near t0 2 X(

¯K).



Silverman’s VCH I, II, III, 1992-1994

“I’ve always thought it was intriguing that the difference 
h(P_t) - h(P)h(t) is [so well behaved].  On the other hand, 
I’ve never found a good application.”  

 - Joe Silverman, July 20, 2015
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=) we are set up to study the distribution of “small” points on X

=) ˆhEt(Pt) defines a “good height function” on X(

¯K)

(e.g. Baker--Rumely, Chambert-Loir, Favre--Rivera-Letelier 2006, Yuan 2008)
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satisfy

The components in the local decomposition

(1)

ˆ�Et,v(Pt) =
ˆ�E,t0(P ) log |u(t)|v + continuous correction term

(2) correction term ⌘ 0 for all but finitely many v 2 MK

for t near t0 2 X(

¯K).

Silverman’s VCH I, II, III, 1992-1994

i.e., a continuous potential function for an adelic measure µ = {µv}
(or an adelic metrized line bundle, in sense of Zhang, 1995)
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What are these measures on X? 
(strictly speaking, the measures live on the Berkovich analytification of X)
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(strictly speaking, the measures live on the Berkovich analytification of X)
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ˆ�E,t0(P ) log |u(t)|v + continuous correction term

(2) correction term ⌘ 0 for all but finitely many v 2 MK

µv = �(correction term)

The measure is a pull-back of the Haar measures on the elliptic curves.  
This is a special case of the dynamical bifurcation measure and 
the correction term governs the “intensity” of the bifurcation.  
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Call-Silverman canonical height (1994)

f : P1 ! P1

ĥf : P1(K̄) ! R
ĥf (f(z)) = (deg f)ĥf (z)

ĥf (z) = h(z) +O(1)
determined uniquely by two properties:

ĥf (z) = lim
n!1

1

(deg f)n
h(fn(z))

=
X

v2MK

�̂f,v(z)

The variation of the canonical height -- at the archimedean place -- 
quantifies bifurcations in a traditional dynamical sense.

{

Study variation

ˆhft(Pt) for t 2 X, in families {ft}.
Take the Laplacian � of the local heights, as functions of t.



Example:  degree 2 polynomials ft(z) = z2 + t t 2 C
P = 0

The Mandelbrot set

ˆ�ft,v=1(Pt) =
1

2

log |t|+ correction term

Bifurcation measure µP is

harmonic measure on @M

(Douady-Hubbard, Sibony 1981,
Mañé-Sad-Sullivan 1983)

for |t| large



Example:  degree 2 polynomials ft(z) = z2 + t t 2 C
P = 1

A Mandelbrot-like set

(Baker-D. 2011)

ˆ�ft,v=1(Pt) =
1

2

log |t|+ correction term

Bifurcation measure µP is

harmonic measure on @M
Used to answer an “unlikely intersections” question

posed by Zannier: there are only finitely many t
for which both 0 and 1 have finite orbit for ft.

for |t| large



In these examples, the measures are compactly supported (away from 
point of bad reduction at infinity).  So the “correction terms” will be nice 
harmonic functions near infinity.  

For general families of polynomials, height functions and measures depend 
only on rates of escape to infinity.  Ingram proved the analog of Tate’s 1983 result:

Theorem. (Ingram, 2012)

ĥft(Pt) = hX,DP (t) + O(1)



Example, in the context of Silverman’s VCH I,II, III

Et = {y2 = x(x� 1)(x� t)}

P = (a,
p

a(a� 1)(a� t))

(1)

ˆ�Et,v(Pt) =
ˆ�E,t0(P ) log |u(t)|v + continuous correction term

µv = �(correction term)

(D.-Wang-Ye, 2015) building on the results 
of (Masser-Zannier, 2008, 2010, 2012)

a 2 Q(t)

Fact 1. The parameters t 2 X where Pt is torsion on Et

are equidistributed with respect to these measures µP,v.

Fact 2. The measures {µPv} coincide with {µQv} if and only if

the points P and Q are linearly related on E.

This can be seen already at the archimedean place.

(2) correction term ⌘ 0 for all but finitely many v 2 MK
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a = 5a = 5







µa = µb if and only if a = ba = 2 b = 5

Et = {y2 = x(x� 1)(x� t)}
The Haar measure on Et pushed down to P1 is

µt =
C(t)

|z(z � 1)(z � t)| |dz|
2 where C(t) = 2|t(t� 1)|⇢⌃(t).

Density for 
hyperbolic metric on 

triply-punctured 
sphere (McMullen)



µa = µb if and only if a = ba = 2 b = 5

Et = {y2 = x(x� 1)(x� t)}

gt(z) = 2C(t)

Z

P1

log |z � ⇣|
|⇣(⇣ � 1)(⇣ � t)| |d⇣|

2

Potential function for µt: =)
Potential function for µa:

ga(t) = 2C(t)

Z

P1

log |a� ⇣|
|⇣(⇣ � 1)(⇣ � t)| |d⇣|

2
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                   Particular families of polynomials and rational maps 
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but expect to be true

False for general
dynamical families!
(D.-Wang-Ye, 2015)

What do we know for dynamical canonical height?
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The components in the local decomposition

(1)

ˆ�Et,v(Pt) =
ˆ�E,t0(P ) log |u(t)|v + continuous correction term

for t near t0 2 X(

¯K).

P 2 E(k)

K = number field

E = elliptic curve / function field k = K(X)

Theorem. (Silverman)

A more basic question:  
do we understand the leading terms?

Fact. ˆhE(P ) and

ˆ�E,t0(P ) are rational numbers.

Explanation. These are intersection numbers on a Néron model.

Another Fact. The analogous “weak” Néron models do not
always exist in the dynamical setting. (Call-Silverman, Hsia)



Rationality of canonical height 
(work in progress with Dragos Ghioca)

1.  There is a dynamical proof that local/global canonical heights 
are always rational for elliptic curves.   

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Idea:  
Dynamics of the multiplication-by-2
map on the Berkovich P1, 
Julia set is an interval.
Action is by the tent map of slope 2,
all rational points are preperiodic.
(Favre, Rivera-Letelier)  

Theorem. (Ingram, 2012)

For polynomials, local heights at

non-archimedean places are rational.

Compare:

The tent map of slope 2
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Rationality of canonical height 
(work in progress with Dragos Ghioca)

Idea: 
Julia set contains forward invariant
intervals in the Berkovich space 
AND classical points.
There are Cantor sets of points 
containing aperiodic itineraries.

ft(z) =
t18z6 + 1

t18z6 + z(z � 1)(z + 1)

(Bajpai, Benedetto, Chen, Kim, Marschall, Onul, Xiao)

k = Q̄((t))
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Rationality of canonical height 
(work in progress with Dragos Ghioca)

Idea: 
Julia set contains forward invariant
intervals in the Berkovich space 
AND classical points.
There are Cantor sets of points 
containing aperiodic itineraries.

ft(z) =
t18z6 + 1

t18z6 + z(z � 1)(z + 1)

(Bajpai, Benedetto, Chen, Kim, Marschall, Onul, Xiao)

BUT, we expect these points to be transcendental...
(Fatou, Bell-Bruin-Coons,  Adamczewski-Bell)

k = Q̄((t))



Next steps

Question. Is the canonical height

ˆhf (P ) rational?

Question. Is there a good intersection-theoretic description of

ˆhf (P ),

even in the absence of (weak) Néron models?

Question. Are the pieces in the local decomposition of

ˆhft(Pt)

“nice” functions of t?

Question. Is there a divisor DP 2 Pic(X)⌦Q so that

k = K(X), f : P1 ! P1
defined over k, P 2 P1

(

¯k)

ĥft(Pt) = hX,DP (t) + O(1)



Thank you, Joe, for providing so many 
great ideas and inspiration!
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