Does ω^{*} know its right hand from its left?

Will Brian
University of North Carolina at Charlotte

PALS

April 2, 2024

The space $\beta \omega$

Recall that a compactification of ω is a compact Hausdorff space containing ω as a dense subspace.

The space $\beta \omega$

Recall that a compactification of ω is a compact Hausdorff space containing ω as a dense subspace.

The space $\beta \omega$

Recall that a compactification of ω is a compact Hausdorff space containing ω as a dense subspace.

The space $\beta \omega$

Recall that a compactification of ω is a compact Hausdorff space containing ω as a dense subspace.

The Stone-Čech compactification of ω, denoted $\beta \omega$, is the space of all ultrafilters on ω.

The space $\beta \omega$

Recall that a compactification of ω is a compact Hausdorff space containing ω as a dense subspace.

The Stone-Čech compactification of ω, denoted $\beta \omega$, is the space of all ultrafilters on ω. Equivalently, it is the Stone space of the Boolean algebra $\mathcal{P}(\omega)$.

The space $\beta \omega$

Recall that a compactification of ω is a compact Hausdorff space containing ω as a dense subspace.

The Stone-Čech compactification of ω, denoted $\beta \omega$, is the space of all ultrafilters on ω. Equivalently, it is the Stone space of the Boolean algebra $\mathcal{P}(\omega)$.
$\beta \omega$ is the largest compactification of ω :

The space $\beta \omega$

Recall that a compactification of ω is a compact Hausdorff space containing ω as a dense subspace.

The Stone-Čech compactification of ω, denoted $\beta \omega$, is the space of all ultrafilters on ω. Equivalently, it is the Stone space of the Boolean algebra $\mathcal{P}(\omega)$.
$\beta \omega$ is the largest compactification of ω :
i.e., if $\gamma \omega$ is any other compactification of ω, then there is a continuous surjection $\pi: \beta \omega \rightarrow \gamma \omega$ that fixes ω.

The space $\beta \omega$

$\beta \omega$ is the unique compactification of ω with the following property (called the Stone extension property):

- every function mapping ω into a compact Hausdorff space extends continuously to $\beta \omega$.

The space $\beta \omega$

$\beta \omega$ is the unique compactification of ω with the following property (called the Stone extension property):

- every function mapping ω into a compact Hausdorff space extends continuously to $\beta \omega$.

The image of some $u \in \beta \omega$ in this extension is often denoted by

$$
\beta f(u)=u-\lim _{n \in \omega} f(n)
$$

The space $\beta \omega$

$\beta \omega$ is the unique compactification of ω with the following property (called the Stone extension property):

- every function mapping ω into a compact Hausdorff space extends continuously to $\beta \omega$.

The image of some $u \in \beta \omega$ in this extension is often denoted by

$$
\beta f(u)=u-\lim _{n \in \omega} f(n) .
$$

The fact that $\beta \omega$ is the largest compactification of ω follows from the extension property.

The space ω^{*}

The space of all non-principal ultrafilters on ω, known as the Stone-Čech remainder of ω, is denoted

$$
\omega^{*}=\beta \omega \backslash \omega .
$$

It is the Stone space of the Boolean algebra $\mathcal{P}(\omega) /$ fin.

The space ω^{*}

The space of all non-principal ultrafilters on ω, known as the Stone-Čech remainder of ω, is denoted

$$
\omega^{*}=\beta \omega \backslash \omega .
$$

It is the Stone space of the Boolean algebra $\mathcal{P}(\omega) /$ fin.
A function $F: \omega^{*} \rightarrow \omega^{*}$ is called trivial if there is a finite-to-one function $f: \omega \rightarrow \omega$ that induces F via the Stone extension property.

The space ω^{*}

The space of all non-principal ultrafilters on ω, known as the Stone-Čech remainder of ω, is denoted

$$
\omega^{*}=\beta \omega \backslash \omega .
$$

It is the Stone space of the Boolean algebra $\mathcal{P}(\omega) /$ fin.
A function $F: \omega^{*} \rightarrow \omega^{*}$ is called trivial if there is a finite-to-one function $f: \omega \rightarrow \omega$ that induces F via the Stone extension property.

Explicitly, for any ultrafilter $u \in \omega^{*}, F(u)=\{f[A]: A \in u\}$.

Trivial self-homeomorphisms

For example, the shift map $\sigma: \omega^{*} \rightarrow \omega^{*}$ is defined by setting

$$
\sigma(u)=\{A+1: A \in u\} .
$$

This is a trivial homeomorphism $\omega^{*} \rightarrow \omega^{*}$, induced by the successor function $n \mapsto n+1$ on ω.

Trivial self-homeomorphisms

For example, the shift map $\sigma: \omega^{*} \rightarrow \omega^{*}$ is defined by setting

$$
\sigma(u)=\{A+1: A \in u\} .
$$

This is a trivial homeomorphism $\omega^{*} \rightarrow \omega^{*}$, induced by the successor function $n \mapsto n+1$ on ω. The inverse σ^{-1} is also a trivial self-homeomorphism of ω^{*}, induced by the function

$$
f(n)= \begin{cases}n-1 & \text { if } n>0 \\ 0 & \text { if } n=0\end{cases}
$$

Trivial self-homeomorphisms

For example, the shift map $\sigma: \omega^{*} \rightarrow \omega^{*}$ is defined by setting

$$
\sigma(u)=\{A+1: A \in u\} .
$$

This is a trivial homeomorphism $\omega^{*} \rightarrow \omega^{*}$, induced by the successor function $n \mapsto n+1$ on ω. The inverse σ^{-1} is also a trivial self-homeomorphism of ω^{*}, induced by the function

$$
f(n)= \begin{cases}n-1 & \text { if } n>0 \\ 0 & \text { if } n=0\end{cases}
$$

There are only $2^{\aleph_{0}}=\mathfrak{c}$ maps $\omega \rightarrow \omega$. Consequently, there are at most \mathfrak{c} trivial self-maps of ω^{*}.

Trivial self-homeomorphisms

For example, the shift map $\sigma: \omega^{*} \rightarrow \omega^{*}$ is defined by setting

$$
\sigma(u)=\{A+1: A \in u\} .
$$

This is a trivial homeomorphism $\omega^{*} \rightarrow \omega^{*}$, induced by the successor function $n \mapsto n+1$ on ω. The inverse σ^{-1} is also a trivial self-homeomorphism of ω^{*}, induced by the function

$$
f(n)= \begin{cases}n-1 & \text { if } n>0 \\ 0 & \text { if } n=0\end{cases}
$$

There are only $2^{\aleph_{0}}=\mathfrak{c}$ maps $\omega \rightarrow \omega$. Consequently, there are at most \mathfrak{c} trivial self-maps of ω^{*}.

Theorem (W. Rudin, 1956)

The Continuum Hypothesis (CH) implies there are 2^{c} selfhomeomorphisms of ω^{*}. In particular, some of them are non-trivial.

A theorem of Shelah

In contrast with Rudin's theorem, we have the following.

Theorem (Shelah, 1979)

It is consistent that every self-homeomorphism of ω^{*} is trivial.

A theorem of Shelah

In contrast with Rudin's theorem, we have the following.

Theorem (Shelah, 1979)

It is consistent that every self-homeomorphism of ω^{*} is trivial.
Later work has strengthened Shelah's result in several ways:

- (Shelah and Steprāns, 1988) PFA implies that all self-homeomorphisms of ω^{*} are trivial.

A theorem of Shelah

In contrast with Rudin's theorem, we have the following.

Theorem (Shelah, 1979)

It is consistent that every self-homeomorphism of ω^{*} is trivial.
Later work has strengthened Shelah's result in several ways:

- (Shelah and Steprāns, 1988) PFA implies that all self-homeomorphisms of ω^{*} are trivial.
- (Vecličković, 1992) OCA+MA implies that all self-homeomorphisms of ω^{*} are trivial.

A theorem of Shelah

In contrast with Rudin's theorem, we have the following.

Theorem (Shelah, 1979)

It is consistent that every self-homeomorphism of ω^{*} is trivial.
Later work has strengthened Shelah's result in several ways:

- (Shelah and Steprāns, 1988) PFA implies that all self-homeomorphisms of ω^{*} are trivial.
- (Vecličković, 1992) OCA+MA implies that all self-homeomorphisms of ω^{*} are trivial.
- (Farah, 2000) OCA+MA imposes strong restrictions on all self-maps of ω^{*} (not just self-homeomorphisms), and there is a sense in which all of them are nearly trivial.

dynamical systems

A dynamical system is a compact Hausdorff space X, together with a self-homeomorphism $f: X \rightarrow X$.

dynamical systems

A dynamical system is a compact Hausdorff space X, together with a self-homeomorphism $f: X \rightarrow X$.

Two dynamical systems (X, f) and (Y, g) are conjugate if there is a homeomorphism $\phi: X \rightarrow Y$ such that $\phi \circ f=g \circ \phi$.

dynamical systems

A dynamical system is a compact Hausdorff space X, together with a self-homeomorphism $f: X \rightarrow X$.

Two dynamical systems (X, f) and (Y, g) are conjugate if there is a homeomorphism $\phi: X \rightarrow Y$ such that $\phi \circ f=g \circ \phi$.

This is the natural notion of isomorphism in the category of dynamical systems.

dynamical systems

A dynamical system is a compact Hausdorff space X, together with a self-homeomorphism $f: X \rightarrow X$.

Two dynamical systems (X, f) and (Y, g) are conjugate if there is a homeomorphism $\phi: X \rightarrow Y$ such that $\phi \circ f=g \circ \phi$.

This is the natural notion of isomorphism in the category of dynamical systems. A weaker notion is that of a factor map, which is defined the same way, except that ϕ is only required to be a continuous surjection.

A question of van Douwen

Question (van Douwen, ~1985)
Are $\left(\omega^{*}, \sigma\right)$ and $\left(\omega^{*}, \sigma^{-1}\right)$ conjugate?

A question of van Douwen

Question (van Douwen, ~1985)

Are $\left(\omega^{*}, \sigma\right)$ and $\left(\omega^{*}, \sigma^{-1}\right)$ conjugate?
In other words, can ω^{*} tell its right hand from its left?

A question of van Douwen

Question (van Douwen, ~1985)

$$
\text { Are }\left(\omega^{*}, \sigma\right) \text { and }\left(\omega^{*}, \sigma^{-1}\right) \text { conjugate? }
$$

In other words, can ω^{*} tell its right hand from its left?

Theorem (van Douwen, ~1985, published posthumously in 1990)

If $\left(\omega^{*}, \sigma\right)$ and $\left(\omega^{*}, \sigma^{-1}\right)$ are conjugate, then the map witnessing this is a non-trivial self-homeomorphism of ω^{*}.

A question of van Douwen

Question (van Douwen, ~1985)

$$
\text { Are }\left(\omega^{*}, \sigma\right) \text { and }\left(\omega^{*}, \sigma^{-1}\right) \text { conjugate? }
$$

In other words, can ω^{*} tell its right hand from its left?
Theorem (van Douwen, ~ 1985, published posthumously in 1990)
If $\left(\omega^{*}, \sigma\right)$ and $\left(\omega^{*}, \sigma^{-1}\right)$ are conjugate, then the map witnessing this is a non-trivial self-homeomorphism of ω^{*}.

Corollary (van Douwen and Shelah)

It is consistent that $\left(\omega^{*}, \sigma\right)$ and $\left(\omega^{*}, \sigma^{-1}\right)$ are not conjugate.
In fact, it is consistent that there is not even a factor map from $\left(\omega^{*}, \sigma\right)$ to (ω^{*}, σ^{-1}) or vice versa.

The main theorem

Theorem (B, 2024)

CH implies $\left(\omega^{*}, \sigma\right)$ and $\left(\omega^{*}, \sigma^{-1}\right)$ are conjugate.
Consequently, the question of whether these two dynamical systems are conjugate is independent of ZFC.

The main theorem

Theorem (B, 2024)

CH implies $\left(\omega^{*}, \sigma\right)$ and $\left(\omega^{*}, \sigma^{-1}\right)$ are conjugate.
Consequently, the question of whether these two dynamical systems are conjugate is independent of ZFC.

Via Stone duality, this theorem is equivalent to:

Theorem (B, 2024)

CH implies that the map $\sigma: \mathcal{P}(\omega) /$ fin $\rightarrow \mathcal{P}(\omega) /$ fin defined by

$$
\sigma([A])=[A+1]
$$

is conjugate to σ^{-1} in the automorphism group of $\mathcal{P}(\omega) /$ fin.

The main theorem

Theorem (B, 2024)

CH implies $\left(\omega^{*}, \sigma\right)$ and $\left(\omega^{*}, \sigma^{-1}\right)$ are conjugate.
Consequently, the question of whether these two dynamical systems are conjugate is independent of ZFC.

Via Stone duality, this theorem is equivalent to:

Theorem (B, 2024)

CH implies that the map $\sigma: \mathcal{P}(\omega) /$ fin $\rightarrow \mathcal{P}(\omega) /$ fin defined by

$$
\sigma([A])=[A+1]
$$

is conjugate to σ^{-1} in the automorphism group of $\mathcal{P}(\omega) /$ fin.
In what time remains, we will sketch a part of the proof.

Back-and-forth arguments

The proof uses a back-and-forth style argument.

Back-and-forth arguments

The proof uses a back-and-forth style argument.
In its simplest form, this is the kind of argument used to show that any two countable dense subsets of the reals are order-isomorphic.

Back-and-forth arguments

The proof uses a back-and-forth style argument.
In its simplest form, this is the kind of argument used to show that any two countable dense subsets of the reals are order-isomorphic.

$$
(X, \leq) \quad(Y, \leq)
$$

Back-and-forth arguments

The proof uses a back-and-forth style argument.
In its simplest form, this is the kind of argument used to show that any two countable dense subsets of the reals are order-isomorphic.

(X, \leq)

$$
(Y, \leq)
$$

Back-and-forth arguments

The proof uses a back-and-forth style argument.
In its simplest form, this is the kind of argument used to show that any two countable dense subsets of the reals are order-isomorphic.

Back-and-forth arguments

The proof uses a back-and-forth style argument.
In its simplest form, this is the kind of argument used to show that any two countable dense subsets of the reals are order-isomorphic.

Back-and-forth arguments

The proof uses a back-and-forth style argument.
In its simplest form, this is the kind of argument used to show that any two countable dense subsets of the reals are order-isomorphic.

(X, \leq)

Back-and-forth arguments

The proof uses a back-and-forth style argument.
In its simplest form, this is the kind of argument used to show that any two countable dense subsets of the reals are order-isomorphic.

Back-and-forth arguments

The proof uses a back-and-forth style argument.
In its simplest form, this is the kind of argument used to show that any two countable dense subsets of the reals are order-isomorphic.

Back-and-forth arguments

The proof uses a back-and-forth style argument.
In its simplest form, this is the kind of argument used to show that any two countable dense subsets of the reals are order-isomorphic.

Back-and-forth arguments

The proof uses a back-and-forth style argument.
In its simplest form, this is the kind of argument used to show that any two countable dense subsets of the reals are order-isomorphic.

Back-and-forth arguments

The proof uses a back-and-forth style argument.
In its simplest form, this is the kind of argument used to show that any two countable dense subsets of the reals are order-isomorphic.

This argument relies on two facts:

Back-and-forth arguments

The proof uses a back-and-forth style argument.
In its simplest form, this is the kind of argument used to show that any two countable dense subsets of the reals are order-isomorphic.

This argument relies on two facts:

- We can well order the sets X and Y so that all initial segments are finite.

Back-and-forth arguments

The proof uses a back-and-forth style argument.
In its simplest form, this is the kind of argument used to show that any two countable dense subsets of the reals are order-isomorphic.

This argument relies on two facts:

- We can well order the sets X and Y so that all initial segments are finite.
- For any finite partial isomorphism $\phi_{0}:(F, \leq) \rightarrow(G, \leq)$, where F and G are finite subsets of X and Y respectively, and for any $x \in X \backslash F$, there is an extension of ϕ_{0} to $F \cup\{x\}$ (and similarly when the roles of X and Y are switched).

Back-and-forth arguments

The proof uses a back-and-forth style argument.
In its simplest form, this is the kind of argument used to show that any two countable dense subsets of the reals are order-isomorphic.

This argument relies on two facts:

- We can well order the sets X and Y so that all initial segments are finite.
- For any finite partial isomorphism $\phi_{0}:(F, \leq) \rightarrow(G, \leq)$, where F and G are finite subsets of X and Y respectively, and for any $x \in X \backslash F$, there is an extension of ϕ_{0} to $F \cup\{x\}$ (and similarly when the roles of X and Y are switched).
The rest is a routine construction by recursion.

A transfinite version

To prove our theorem via a similar back-and-forth argument, we would like the following two things to be true:

A transfinite version

To prove our theorem via a similar back-and-forth argument, we would like the following two things to be true:

- We can well order the set $\mathcal{P}(\omega) /$ fin so that all initial segments are countable (order type ω_{1}).

A transfinite version

To prove our theorem via a similar back-and-forth argument, we would like the following two things to be true:

- We can well order the set $\mathcal{P}(\omega) /$ fin so that all initial segments are countable (order type ω_{1}).
- For any partial isomorphism $\phi_{0}:(\mathbb{A}, \sigma) \rightarrow\left(\mathbb{B}, \sigma^{-1}\right)$ between countable substructures of $(\mathcal{P}(\omega) /$ fin,$\sigma)$ and $\left(\mathcal{P}(\omega) /\right.$ fin, $\left.\sigma^{-1}\right)$, and for any $x \in \mathcal{P}(\omega) /$ fin $\backslash \mathbb{A}$, there is an extension of ϕ_{0} to a larger substructure $\left(\mathbb{A}^{\prime}, \sigma\right)$ of $(\mathcal{P}(\omega) /$ fin,$\sigma)$ with $\mathbb{A}^{\prime} \supseteq \mathbb{A} \cup\{x\}$ (and similarly when the roles of σ and σ^{-1} are switched).

A transfinite version

To prove our theorem via a similar back-and-forth argument, we would like the following two things to be true:

- We can well order the set $\mathcal{P}(\omega) /$ fin so that all initial segments are countable (order type ω_{1}).
- For any partial isomorphism $\phi_{0}:(\mathbb{A}, \sigma) \rightarrow\left(\mathbb{B}, \sigma^{-1}\right)$ between countable substructures of $(\mathcal{P}(\omega) /$ fin,$\sigma)$ and $\left(\mathcal{P}(\omega) /\right.$ fin, $\left.\sigma^{-1}\right)$, and for any $x \in \mathcal{P}(\omega) /$ fin $\backslash \mathbb{A}$, there is an extension of ϕ_{0} to a larger substructure $\left(\mathbb{A}^{\prime}, \sigma\right)$ of $(\mathcal{P}(\omega) /$ fin,$\sigma)$ with $\mathbb{A}^{\prime} \supseteq \mathbb{A} \cup\{x\}$ (and similarly when the roles of σ and σ^{-1} are switched).
The first item is equivalent to CH , because $\mid \mathcal{P}(\omega) /$ fin $\mid=\mathfrak{c}$.

A transfinite version

To prove our theorem via a similar back-and-forth argument, we would like the following two things to be true:

- We can well order the set $\mathcal{P}(\omega) /$ fin so that all initial segments are countable (order type ω_{1}).
- For any partial isomorphism $\phi_{0}:(\mathbb{A}, \sigma) \rightarrow\left(\mathbb{B}, \sigma^{-1}\right)$ between countable substructures of $(\mathcal{P}(\omega) /$ fin,$\sigma)$ and $\left(\mathcal{P}(\omega) /\right.$ fin, $\left.\sigma^{-1}\right)$, and for any $x \in \mathcal{P}(\omega) /$ fin $\backslash \mathbb{A}$, there is an extension of ϕ_{0} to a larger substructure $\left(\mathbb{A}^{\prime}, \sigma\right)$ of $(\mathcal{P}(\omega) /$ fin,$\sigma)$ with $\mathbb{A}^{\prime} \supseteq \mathbb{A} \cup\{x\}$ (and similarly when the roles of σ and σ^{-1} are switched).
The first item is equivalent to CH , because $\mid \mathcal{P}(\omega) /$ fin $\mid=\mathfrak{c}$.

Not so fast

A very annoying fact:
The second bullet point on the previous slide is not generally true.

Not so fast . . . A very annoying fact:

The second bullet point on the previous slide is not generally true. More precisely, there are countable substructures (\mathbb{A}, σ^{-1}) and $\left(\mathbb{A}^{\prime}, \sigma^{-1}\right)$ of $\left(\mathcal{P}(\omega) /\right.$ fin, $\left.\sigma^{-1}\right)$, with $\mathbb{A} \subseteq \mathbb{A}^{\prime}$, and an embedding $\eta:\left(\mathbb{A}, \sigma^{-1}\right) \rightarrow\left(\mathcal{P}(\omega) /\right.$ fin, $\left.\sigma^{-1}\right)$, such that there is no embedding $\bar{\eta}:\left(\mathbb{A}^{\prime}, \sigma^{-1}\right) \rightarrow\left(\mathcal{P}(\omega) /\right.$ fin,$\left.\sigma^{-1}\right)$ with $\bar{\eta} \circ \iota=\eta$.

What to do?

In other words, some of the tasks that need doing in our transfinite back-and-forth argument are undoable.

What to do?

In other words, some of the tasks that need doing in our transfinite back-and-forth argument are undoable. To cope with this fact, we will do the transfinite recursion more carefully, so as to avoid ever running into undoable instances of this lifting problem.

What to do?

In other words, some of the tasks that need doing in our transfinite back-and-forth argument are undoable. To cope with this fact, we will do the transfinite recursion more carefully, so as to avoid ever running into undoable instances of this lifting problem.

Main Lemma:

Suppose $\left(\mathbb{A}, \sigma^{-1}\right)$ and $\left(\mathbb{A}^{\prime}, \sigma^{-1}\right)$ are countable substructures of $\left(\mathcal{P}(\omega) /\right.$ fin,$\left.\sigma^{-1}\right)$ with $\mathbb{A} \subseteq \mathbb{A}^{\prime}$, and $\eta:(\mathbb{A}, \sigma) \rightarrow\left(\mathcal{P}(\omega) /\right.$ fin,$\left.\sigma^{-1}\right)$ is an "elementary" embedding. Then η extends to an embedding $\bar{\eta}:\left(\mathbb{A}^{\prime}, \sigma^{-1}\right) \rightarrow\left(\mathcal{P}(\omega) /\right.$ fin,$\left.\sigma^{-1}\right)$, so that $\bar{\eta} \circ \iota=\eta$.

A better back-and-forth

(1) Using CH , well order $\mathcal{P}(\omega) /$ fin in order type ω_{1}.

A better back-and-forth

(1) Using CH , well order $\mathcal{P}(\omega) /$ fin in order type ω_{1}.
(2) Prove that our main lemma can work in either direction; i.e., it is still true when the roles of σ and σ^{-1} are interchanged.

A better back-and-forth

(1) Using CH , well order $\mathcal{P}(\omega) /$ fin in order type ω_{1}.
(2) Prove that our main lemma can work in either direction; i.e., it is still true when the roles of σ and σ^{-1} are interchanged.
(3) Begin the recursion by fixing a countable elementary substructure of $(\mathcal{P}(\omega) /$ fin,$\sigma)$.

A better back-and-forth

(1) Using CH , well order $\mathcal{P}(\omega) /$ fin in order type ω_{1}.
(2) Prove that our main lemma can work in either direction; i.e., it is still true when the roles of σ and σ^{-1} are interchanged.
(3) Begin the recursion by fixing a countable elementary substructure of $(\mathcal{P}(\omega) /$ fin,$\sigma)$.
$(\mathcal{P}(\omega) /$ fin,$\sigma)$

$$
\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right)
$$

A better back-and-forth

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma)
$$

$$
\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right)
$$

(4) Embed this structure into $\left(\mathcal{P}(\omega) /\right.$ fin, $\left.\sigma^{-1}\right)$.

A better back-and-forth

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma)
$$

$$
\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right)
$$

(4) Embed this structure into $\left(\mathcal{P}(\omega) /\right.$ fin, $\left.\sigma^{-1}\right)$. Note: we have no way to guarantee the image of this embedding is elementary.

A better back-and-forth

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma) \quad\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right)
$$

(4) Embed this structure into $\left(\mathcal{P}(\omega) /\right.$ fin, $\left.\sigma^{-1}\right)$. Note: we have no way to guarantee the image of this embedding is elementary.
(5) This embedding is a partial isomorphism, and can be viewed as going in the other direction.

A better back-and-forth

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma) \quad\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right)
$$

(4) Embed this structure into $\left(\mathcal{P}(\omega) /\right.$ fin, $\left.\sigma^{-1}\right)$. Note: we have no way to guarantee the image of this embedding is elementary.
(5) This embedding is a partial isomorphism, and can be viewed as going in the other direction.
(6) Find a countable elementary substructure of $\left(\mathcal{P}(\omega) /\right.$ fin, $\left.\sigma^{-1}\right)$ that contains the image of our embedding.

A better back-and-forth

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma)
$$

$$
\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right)
$$

(7) This is exactly the kind of situation where our lemma applies!

A better back-and-forth

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma)
$$

$$
\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right)
$$

(7) This is exactly the kind of situation where our lemma applies! Use the lemma to extend the mapping to the larger structure.

A better back-and-forth

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma) \quad\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right)
$$

(7) This is exactly the kind of situation where our lemma applies! Use the lemma to extend the mapping to the larger structure. We cannot guarantee the image of this extension is elementary.

A better back-and-forth

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma) \quad\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right)
$$

(7) This is exactly the kind of situation where our lemma applies! Use the lemma to extend the mapping to the larger structure. We cannot guarantee the image of this extension is elementary.
(8) Once again, we may view the arrow as going the other way.

A better back-and-forth

(7) This is exactly the kind of situation where our lemma applies! Use the lemma to extend the mapping to the larger structure. We cannot guarantee the image of this extension is elementary.
(8) Once again, we may view the arrow as going the other way.
(9) Find a countable elementary substructure of $(\mathcal{P}(\omega) /$ fin, σ) that contains the image of the embedding.

A better back-and-forth

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma)
$$

$$
\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right)
$$

(10) This is again the kind of situation where our lemma applies!

A better back-and-forth

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma)
$$

$$
\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right)
$$

(10) This is again the kind of situation where our lemma applies! Extend the mapping to the larger structure.

A better back-and-forth

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma)
$$

$$
\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right)
$$

(10) This is again the kind of situation where our lemma applies! Extend the mapping to the larger structure.
(11) Continue in this way for ω_{1} steps, taking unions at limit stages.

A better back-and-forth

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma)
$$

$$
\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right)
$$

(10) This is again the kind of situation where our lemma applies! Extend the mapping to the larger structure.
(11) Continue in this way for ω_{1} steps, taking unions at limit stages.
(12) At stage α, be sure that the elementary structure used on each side contains the $\alpha^{\text {th }}$ member of $\mathcal{P}(\omega) /$ fin.

Two corollaries and a question

Observe that, when we take unions at the countable limit stages of the construction, we get elementary substructures on both sides, and an isomorphism between them.

Two corollaries and a question

Observe that, when we take unions at the countable limit stages of the construction, we get elementary substructures on both sides, and an isomorphism between them. Hence, by executing only the first ω stages of this proof:

Corollary

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma) \equiv\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right) .
$$

Two corollaries and a question

Observe that, when we take unions at the countable limit stages of the construction, we get elementary substructures on both sides, and an isomorphism between them. Hence, by executing only the first ω stages of this proof:

Corollary

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma) \equiv\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right) .
$$

Note that this is a theorem of ZFC (no CH required).

Two corollaries and a question

Observe that, when we take unions at the countable limit stages of the construction, we get elementary substructures on both sides, and an isomorphism between them. Hence, by executing only the first ω stages of this proof:

Corollary

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma) \equiv\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right) .
$$

Note that this is a theorem of ZFC (no CH required).

Corollary

Assuming CH, there is a nontrivial self-homeomorphism $\phi: \omega^{*} \rightarrow \omega^{*}$ such that $\phi \circ \sigma=\sigma \circ \phi$.

Two corollaries and a question

Observe that, when we take unions at the countable limit stages of the construction, we get elementary substructures on both sides, and an isomorphism between them. Hence, by executing only the first ω stages of this proof:

Corollary

$$
(\mathcal{P}(\omega) / \text { fin }, \sigma) \equiv\left(\mathcal{P}(\omega) / \text { fin }, \sigma^{-1}\right) .
$$

Note that this is a theorem of ZFC (no CH required).

Corollary

Assuming CH, there is a nontrivial self-homeomorphism $\phi: \omega^{*} \rightarrow \omega^{*}$ such that $\phi \circ \sigma=\sigma \circ \phi$.

Question

Is there an order-reversing self-homeomorphism of $[0, \infty)^{*}$?

The end

Thank you for listening

