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A question of van Douwen
A sketch of a proof

The space βω

Recall that a compactification of ω is a compact Hausdorff space
containing ω as a dense subspace.

The Stone-Čech compactification of ω, denoted βω, is the space of
all ultrafilters on ω. Equivalently, it is the Stone space of the
Boolean algebra P(ω).
βω is the largest compactification of ω:
i.e., if γω is any other compactification of ω, then there is a
continuous surjection π : βω → γω that fixes ω.
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The space βω

βω is the unique compactification of ω with the following property
(called the Stone extension property):

every function mapping ω into a compact Hausdorff space
extends continuously to βω.

ω βω

X

βff

ω βω

γω

idω

The image of some u ∈ βω in this extension is often denoted by
βf (u) = u- lim

n∈ω
f (n).

The fact that βω is the largest compactification of ω follows from
the extension property.
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The space ω∗

The space of all non-principal ultrafilters on ω, known as the
Stone-Čech remainder of ω, is denoted

ω∗ = βω \ ω.

It is the Stone space of the Boolean algebra P(ω)/fin.

A function F : ω∗ → ω∗ is called trivial if there is a finite-to-one
function f : ω → ω that induces F via the Stone extension property.

ω βω

βω

f F = βf �ω∗βf

ω∗

ω∗

⊇

⊇

Explicitly, for any ultrafilter u ∈ ω∗, F (u) = {f [A] : A ∈ u}.

Will Brian Does ω∗ know its right hand from its left?



A question of van Douwen
A sketch of a proof

The space ω∗

The space of all non-principal ultrafilters on ω, known as the
Stone-Čech remainder of ω, is denoted

ω∗ = βω \ ω.

It is the Stone space of the Boolean algebra P(ω)/fin.

A function F : ω∗ → ω∗ is called trivial if there is a finite-to-one
function f : ω → ω that induces F via the Stone extension property.

ω βω

βω

f F = βf �ω∗βf

ω∗

ω∗

⊇

⊇

Explicitly, for any ultrafilter u ∈ ω∗, F (u) = {f [A] : A ∈ u}.

Will Brian Does ω∗ know its right hand from its left?



A question of van Douwen
A sketch of a proof

The space ω∗

The space of all non-principal ultrafilters on ω, known as the
Stone-Čech remainder of ω, is denoted

ω∗ = βω \ ω.

It is the Stone space of the Boolean algebra P(ω)/fin.

A function F : ω∗ → ω∗ is called trivial if there is a finite-to-one
function f : ω → ω that induces F via the Stone extension property.

ω βω

βω

f F = βf �ω∗βf

ω∗

ω∗

⊇

⊇

Explicitly, for any ultrafilter u ∈ ω∗, F (u) = {f [A] : A ∈ u}.

Will Brian Does ω∗ know its right hand from its left?



A question of van Douwen
A sketch of a proof

Trivial self-homeomorphisms

For example, the shift map σ : ω∗ → ω∗ is defined by setting

σ(u) = {A + 1 : A ∈ u}.

This is a trivial homeomorphism ω∗ → ω∗, induced by the successor
function n 7→ n + 1 on ω.

The inverse σ−1 is also a trivial
self-homeomorphism of ω∗, induced by the function

f (n) =

{
n − 1 if n > 0
0 if n = 0.

There are only 2ℵ0 = c maps ω → ω. Consequently, there are at
most c trivial self-maps of ω∗.

Theorem (W. Rudin, 1956)

The Continuum Hypothesis (CH) implies there are 2c self-
homeomorphisms of ω∗. In particular, some of them are non-trivial.
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A theorem of Shelah

In contrast with Rudin’s theorem, we have the following.

Theorem (Shelah, 1979)

It is consistent that every self-homeomorphism of ω∗ is trivial.

Later work has strengthened Shelah’s result in several ways:
(Shelah and Steprāns, 1988) PFA implies that all
self-homeomorphisms of ω∗ are trivial.
(Vecličković, 1992) OCA+MA implies that all
self-homeomorphisms of ω∗ are trivial.
(Farah, 2000) OCA+MA imposes strong restrictions on all
self-maps of ω∗ (not just self-homeomorphisms), and there is a
sense in which all of them are nearly trivial.

Will Brian Does ω∗ know its right hand from its left?



A question of van Douwen
A sketch of a proof

A theorem of Shelah

In contrast with Rudin’s theorem, we have the following.

Theorem (Shelah, 1979)

It is consistent that every self-homeomorphism of ω∗ is trivial.

Later work has strengthened Shelah’s result in several ways:
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dynamical systems

A dynamical system is a compact Hausdorff space X , together with
a self-homeomorphism f : X → X .

Two dynamical systems (X , f ) and (Y , g) are conjugate if there is
a homeomorphism φ : X → Y such that φ ◦ f = g ◦ φ.

Y Y

XX f

g

φφ

This is the natural notion of isomorphism in the category of
dynamical systems. A weaker notion is that of a factor map, which
is defined the same way, except that φ is only required to be a
continuous surjection.
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A question of van Douwen

Question (van Douwen, ∼1985)
Are (ω∗, σ) and (ω∗, σ−1) conjugate?

In other words, can ω∗ tell its right hand from its left?

Theorem (van Douwen, ∼1985, published posthumously in 1990)

If (ω∗, σ) and (ω∗, σ−1) are conjugate, then the map witnessing
this is a non-trivial self-homeomorphism of ω∗.

Corollary (van Douwen and Shelah)

It is consistent that (ω∗, σ) and (ω∗, σ−1) are not conjugate.

In fact, it is consistent that there is not even a factor map from
(ω∗, σ) to (ω∗, σ−1) or vice versa.
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The main theorem

Theorem (B, 2024)

CH implies (ω∗, σ) and (ω∗, σ−1) are conjugate.

Consequently, the question of whether these two dynamical systems
are conjugate is independent of ZFC.

Via Stone duality, this theorem is equivalent to:

Theorem (B, 2024)

CH implies that the map σ : P(ω)/fin→ P(ω)/fin defined by

σ([A]) = [A + 1]

is conjugate to σ−1 in the automorphism group of P(ω)/fin.

In what time remains, we will sketch a part of the proof.
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Back-and-forth arguments

The proof uses a back-and-forth style argument.

In its simplest form, this is the kind of argument used to show that
any two countable dense subsets of the reals are order-isomorphic.

(X ,≤) (Y ,≤)

.a0 .b0.b1.a1 .a2 .b2.b3.a3

This argument relies on two facts:
We can well order the sets X and Y so that all initial
segments are finite.
For any finite partial isomorphism φ0 : (F ,≤)→ (G ,≤),
where F and G are finite subsets of X and Y respectively, and
for any x ∈ X \ F , there is an extension of φ0 to F ∪ {x}
(and similarly when the roles of X and Y are switched).

The rest is a routine construction by recursion.
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for any x ∈ X \ F , there is an extension of φ0 to F ∪ {x}
(and similarly when the roles of X and Y are switched).

The rest is a routine construction by recursion.
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A transfinite version
To prove our theorem via a similar back-and-forth argument, we
would like the following two things to be true:

We can well order the set P(ω)/fin so that all initial segments
are countable (order type ω1).
For any partial isomorphism φ0 : (A, σ)→ (B, σ−1) between
countable substructures of (P(ω)/fin, σ) and (P(ω)/fin, σ−1), and
for any x ∈ P(ω)/fin \ A, there is an extension of φ0 to a larger
substructure (A′, σ) of (P(ω)/fin, σ) with A′ ⊇ A ∪ {x}
(and similarly when the roles of σ and σ−1 are switched).

The first item is equivalent to CH, because |P(ω)/fin| = c.

(A′, σ) (P(ω)/fin, σ−1)

(A, σ)

ι η

?
The second item asks for a kind of
"lifting property" for (P(ω)/fin, σ):
given two embeddings as shown,
is there an embedding of (A′, σ)
that completes the diagram?
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Not so fast . . .

A very annoying fact:
The second bullet point on the previous slide is not generally true.

More precisely, there are countable substructures (A, σ−1) and
(A′, σ−1) of (P(ω)/fin, σ−1), with A ⊆ A′, and an embedding
η : (A, σ−1)→ (P(ω)/fin, σ−1), such that there is no embedding
η̄ : (A′, σ−1)→ (P(ω)/fin, σ−1) with η̄ ◦ ι = η.

(A′, σ) (P(ω)/fin, σ−1)

(A, σ)

ι η
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What to do?
In other words, some of the tasks that need doing in our transfinite
back-and-forth argument are undoable.

To cope with this fact, we
will do the transfinite recursion more carefully, so as to avoid ever
running into undoable instances of this lifting problem.

Main Lemma:

Suppose (A, σ−1) and (A′, σ−1) are countable substructures of
(P(ω)/fin, σ−1) with A ⊆ A′, and η : (A, σ)→ (P(ω)/fin, σ−1) is an
“elementary” embedding. Then η extends to an embedding
η̄ : (A′, σ−1)→ (P(ω)/fin, σ−1), so that η̄ ◦ ι = η.

(A′, σ) (P(ω)/fin, σ−1)

(A, σ)

ι η

η̄

Saying η is “elementary” means
(η[A], σ−1) ≺ (P(ω)/fin, σ−1)
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A better back-and-forth

(1) Using CH, well order P(ω)/fin in order type ω1.

(2) Prove that our main lemma can work in either direction; i.e., it
is still true when the roles of σ and σ−1 are interchanged.

(3) Begin the recursion by fixing a countable elementary
substructure of (P(ω)/fin, σ).

(P(ω)/fin, σ) (P(ω)/fin, σ−1)

Will Brian Does ω∗ know its right hand from its left?



A question of van Douwen
A sketch of a proof

A better back-and-forth

(1) Using CH, well order P(ω)/fin in order type ω1.
(2) Prove that our main lemma can work in either direction; i.e., it

is still true when the roles of σ and σ−1 are interchanged.

(3) Begin the recursion by fixing a countable elementary
substructure of (P(ω)/fin, σ).

(P(ω)/fin, σ) (P(ω)/fin, σ−1)

Will Brian Does ω∗ know its right hand from its left?



A question of van Douwen
A sketch of a proof

A better back-and-forth

(1) Using CH, well order P(ω)/fin in order type ω1.
(2) Prove that our main lemma can work in either direction; i.e., it

is still true when the roles of σ and σ−1 are interchanged.
(3) Begin the recursion by fixing a countable elementary

substructure of (P(ω)/fin, σ).

(P(ω)/fin, σ) (P(ω)/fin, σ−1)

Will Brian Does ω∗ know its right hand from its left?



A question of van Douwen
A sketch of a proof

A better back-and-forth

(1) Using CH, well order P(ω)/fin in order type ω1.
(2) Prove that our main lemma can work in either direction; i.e., it

is still true when the roles of σ and σ−1 are interchanged.
(3) Begin the recursion by fixing a countable elementary

substructure of (P(ω)/fin, σ).

(P(ω)/fin, σ) (P(ω)/fin, σ−1)

Will Brian Does ω∗ know its right hand from its left?



A question of van Douwen
A sketch of a proof

A better back-and-forth

(P(ω)/fin, σ) (P(ω)/fin, σ−1)

(4) Embed this structure into (P(ω)/fin, σ−1).

Note: we have no
way to guarantee the image of this embedding is elementary.

(5) This embedding is a partial isomorphism, and can be viewed as
going in the other direction.

(6) Find a countable elementary substructure of (P(ω)/fin, σ−1)
that contains the image of our embedding.

Will Brian Does ω∗ know its right hand from its left?
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A better back-and-forth

(P(ω)/fin, σ) (P(ω)/fin, σ−1)

(7) This is exactly the kind of situation where our lemma applies!

Use the lemma to extend the mapping to the larger structure.
We cannot guarantee the image of this extension is elementary.

(8) Once again, we may view the arrow as going the other way.
(9) Find a countable elementary substructure of (P(ω)/fin, σ) that

contains the image of the embedding.

Will Brian Does ω∗ know its right hand from its left?
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A better back-and-forth

(P(ω)/fin, σ) (P(ω)/fin, σ−1)

(10) This is again the kind of situation where our lemma applies!

Extend the mapping to the larger structure.
(11) Continue in this way for ω1 steps, taking unions at limit stages.
(12) At stage α, be sure that the elementary structure used on each

side contains the αth member of P(ω)/fin.
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Two corollaries and a question
Observe that, when we take unions at the countable limit stages of
the construction, we get elementary substructures on both sides,
and an isomorphism between them.

Hence, by executing only the
first ω stages of this proof:

Corollary

(P(ω)/fin, σ) ≡ (P(ω)/fin, σ−1).

Note that this is a theorem of ZFC (no CH required).

Corollary
Assuming CH, there is a nontrivial self-homeomorphism
φ : ω∗ → ω∗ such that φ ◦ σ = σ ◦ φ.

Question
Is there an order-reversing self-homeomorphism of [0,∞)∗?
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The end

Thank you for listening

Will Brian Does ω∗ know its right hand from its left?
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