# Minion homomorphisms and valued CSP 

Alexandr Kazda

CU Boulder

March 11th 2021

## Valued CSP

- Given $q \in \mathbb{Q}$. Is there a $\sigma: V \rightarrow D$ so that

$$
r_{1} \cdot R_{1}\left(\sigma\left(v_{11}\right), \sigma\left(v_{12}\right), \ldots\right)+\cdots+r_{k} \cdot R_{k}\left(\sigma\left(v_{k 1}\right), \ldots\right) \leq q ?
$$

- Here $R_{i}: D^{n} \rightarrow \mathbb{Q} \cup\{\infty\}$
- New: Parameters $r_{i} \in \mathbb{Q} \cap[0, \infty)$ are part of the input
- Non-uniform PVCSP: Fixed $D$ and the possible cost functions $R$


## Weighted polymorphisms

- $F: A^{n} \rightarrow B$ is weighted sum of operations
- Notation for this seminar:

$$
F_{l}\left(\pi_{1}\right) \boldsymbol{\pi}_{1}+F_{l}\left(\pi_{2}\right) \boldsymbol{\pi}_{2}+\cdots+F_{l}\left(\pi_{n}\right) \boldsymbol{\pi}_{n} \rightarrow F_{O}(g) \boldsymbol{g}+F_{O}(h) \boldsymbol{h}+\ldots .
$$

- Today's view of submodularity

$$
1 \cdot \pi_{1}+1 \cdot \pi_{2} \rightarrow 1 \cdot \wedge+1 \cdot \vee
$$

## Weighted polymorphisms

- Let $\mathbb{A}, \mathbb{B}$ be weighted relational structures
- For each $n$, the set $\mathrm{wPol}_{n}(\mathbb{A}, \mathbb{B})$ consists of $\left(F_{I}, F_{O}\right)$ such that for any $k$-ary $R$ and any $\bar{c}_{1}, \ldots, \bar{c}_{n} \in A^{k}$ we have

$$
F_{l}\left(\pi_{1}\right) R^{\mathbb{A}}\left(\bar{c}_{1}\right)+\cdots+F_{l}\left(\pi_{n}\right) R^{\mathbb{A}}\left(\bar{c}_{n}\right) \geq \sum_{h} F_{O}(h) R^{\mathbb{B}}\left(h\left(\bar{c}_{1}, \ldots, \bar{c}_{n}\right)\right)
$$

- Submodularity again:

$$
R^{\mathbb{A}}\left(\bar{c}_{1}\right)+R^{\mathbb{A}}\left(\bar{c}_{2}\right) \geq R^{\mathbb{B}}\left(\bar{c}_{1} \wedge \bar{c}_{2}\right)+R^{\mathbb{B}}\left(\bar{c}_{1} \vee \bar{c}_{2}\right)
$$

## Homomorphisms ought to give gadget reductions

- Barto, Bulín, Opršal, Krokhin (BBOK), 2019: Homomorphisms of minions give gadget reductions
- Can we do this for PVCSP with weighted polymorphisms?
- What is even the right notion of a homomorphism for weighted polymorphism clones?


## Support minion

$$
F_{l}\left(\pi_{1}\right) \boldsymbol{\pi}_{1}+F_{l}\left(\pi_{2}\right) \boldsymbol{\pi}_{2}+\cdots+F_{l}\left(\pi_{n}\right) \boldsymbol{\pi}_{n} \rightarrow F_{O}(g) \boldsymbol{g}+F_{O}(h) \boldsymbol{h}+\ldots
$$

- Denote by wPol ${ }_{n}^{+}(\mathbb{A}, \mathbb{B})$ all $f$ such that there is some $F \in \operatorname{Pol}_{n}(\mathbb{A}, \mathbb{B})$ with $F_{O}(f)>0$
- Warning: In general wPol ${ }_{n}^{+}(\mathbb{A}, \mathbb{B}) \subsetneq \operatorname{Pol}(\mathbb{A}, \mathbb{B})$
- $\operatorname{Pol}^{+}(\mathbb{A}, \mathbb{B})=\bigcup_{n=1}^{\infty} \operatorname{Pol}_{n}^{+}(\mathbb{A}, \mathbb{B})$ is nonempty and closed under minor-taking
- The minor of $f$ via $\sigma$, is defined as

$$
f^{\sigma}\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)
$$

- Minion homomorphism $\phi: \operatorname{Pol}_{n}^{+}(\mathbb{A}, \mathbb{B}) \rightarrow \operatorname{Pol}_{n}^{+}(\mathbb{C}, \mathbb{D})$ commutes with minor-taking: $\phi\left(f^{\sigma}\right)=\phi(f)^{\sigma}$


## Homomorphisms of weighted polymorphisms (simplified)

- Weighted minion homomorphism $\phi: \operatorname{Pol}(\mathbb{A}, \mathbb{B}) \rightarrow \operatorname{Pol}(\mathbb{C}, \mathbb{D})$ is a minion homomorphism such that when

$$
\sum_{i=1}^{n} F_{l}\left(\pi_{i}\right) \boldsymbol{\pi}_{i} \rightarrow \sum_{f \in \operatorname{Pol}_{n}^{+}(\mathbb{A}, \mathbb{B})} F_{O}(f) \boldsymbol{f}
$$

is from $w P o l_{n}(\mathbb{A}, \mathbb{B})$, then

$$
\sum_{i=1}^{n} F_{l}\left(\pi_{i}\right) \pi_{i} \rightarrow \sum_{f \in \operatorname{Pol}_{n}^{+}(\mathbb{A}, \mathbb{B})} F_{O}(f) \phi(f) .
$$

lies in $\mathrm{wPol}_{n}(\mathbb{C}, \mathbb{D})$

- The not-simplified version is a probability distribution over $\phi$ 's


## Valued Promise Minor Condition Problem $\left(\operatorname{PVMC}_{N}(\mathbb{A}, \mathbb{B})\right)$ :

INPUT: $q \in \mathbb{Q}$; a finite set of minor conditions $\Sigma$ with operation symbols $f_{1}, \ldots, f_{n}$ and rational valued maps $\left(\alpha_{i}, \beta_{i}\right)_{i=1}^{n}$
Arities of $f_{i}$ 's at most $N$
Each $\left(\alpha_{i}, \beta_{i}\right)$ is compatible with $w \operatorname{Pol}(\mathbb{A}, \mathbb{B})$
OUTPUT "Yes": Exists an assignment $\xi:[n] \rightarrow[N]$ such that $f_{i} \mapsto \pi_{\xi(i)}$ satisfies $\Sigma$ and we have $\sum_{i=1}^{n} \alpha_{i}(\xi(i)) \leq \boldsymbol{q}$.
OUTPUT "No": No arity-respecting assignment
$\xi:\left\{f_{1}, \ldots, f_{n}\right\} \rightarrow \mathrm{wPol}^{+}(\mathbb{A}, \mathbb{B})$ satisfying $\Sigma$ such that
$\sum_{i=1}^{n} \beta_{i}\left(\xi\left(f_{i}\right)\right) \leq q$
Compatibility: $(\alpha, \beta)$ is compatible with $w \operatorname{Pol}(\mathbb{A}, \mathbb{B})$ if for any

$$
F \in \mathrm{wPol}_{n}(\mathbb{A}, \mathbb{B})
$$

$$
\sum_{i=1}^{n} F_{l}\left(\pi_{i}\right) \alpha(i) \geq \sum_{h} F_{O}(h) \beta(h)
$$

## Example

- Pick $\mathbb{A}, \mathbb{B}$ on $\{0,1\}$
- Let $n=2$, both ops binary
- Let $\Sigma$ be the system

$$
\begin{aligned}
& f(x, y) \approx g(y, x) \\
& f(y, x) \approx g(y, x)
\end{aligned}
$$

- Suppose $\left(\alpha_{i}, \beta_{i}\right)$ are the same for $i=1,2$
- $\alpha\left(\pi_{1}\right)=\alpha\left(\pi_{2}\right)=1$ and $\beta(f)=f(0,1)+f(1,0)$ with $q=1$ for $i=1,2$
- There is no projection such that $f(x, y) \approx f(y, x)$, so this is not a "Yes" instance
- Is this a "No" instance? It depends


## Example, cont.

- Not a "No" instance if there exist $f, g \in \mathrm{wPol}_{2}^{+}(\mathbb{A}, \mathbb{B})$ such that

$$
\begin{aligned}
& f(x, y) \approx g(y, x) \\
& f(y, x) \approx g(y, x)
\end{aligned}
$$

$$
\text { and } f(0,1)+f(1,0)+g(0,1)+g(1,0) \leq 1
$$

- Really we just want a commutative $f$ such that $4 f(0,1) \leq 1$
- Thus $f(0,1)=f(1,0)=0$ and $f$ is one of $\wedge$, NOR, XNOR or constant 0


## Example, that pesky compatibility

- In order for the example to be a valid instance, we need $\left(\alpha_{i}, \beta_{i}\right)$ to be compatible with wPol $2(\mathbb{A}, \mathbb{B})$
- What does that mean?
- If $F \in \mathrm{wPol}_{2}(\mathbb{A}, \mathbb{B})$ then

$$
F_{l}\left(\pi_{1}\right) \alpha\left(\pi_{1}\right)+F_{l}\left(\pi_{2}\right) \alpha\left(\pi_{2}\right) \geq \sum_{h} F_{O}(h) \beta(h)
$$

- That simplifies to

$$
F_{l}\left(\pi_{1}\right)+F_{l}\left(\pi_{2}\right) \geq \sum_{h} F_{O}(h)(h(0,1)+h(1,0))
$$

- Equivalent to $F \in \operatorname{wPol}\left(\left(\{0,1\}, R^{\mathbb{A}}\right),\left(\{0,1\}, R^{\mathbb{B}}\right)\right)$ where

$$
R^{\mathbb{A}}\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)=R^{\mathbb{A}}\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right)=1, \quad R^{\mathbb{A}}=\infty \text { else, } \quad R^{\mathbb{B}}\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=b+c
$$

## Reductions of PVCSP through PVMC

- Given $\phi: \operatorname{wPol}(\mathbb{A}, \mathbb{B}) \rightarrow \operatorname{wPol}(\mathbb{C}, \mathbb{D})$
- Main idea the same as in the BBOK paper

$$
\operatorname{PVCSP}(\mathbb{C}, \mathbb{D}) \rightarrow \operatorname{PVMC}_{N}(\mathbb{C}, \mathbb{D}) \rightarrow \operatorname{PVMC}_{N}(\mathbb{A}, \mathbb{B}) \rightarrow \operatorname{PVCSP}(\mathbb{A}, \mathbb{B})
$$

- Trivial reduction: $\mathrm{PVMC}_{N}(\mathbb{C}, \mathbb{D}) \rightarrow \mathrm{PVMC}_{N}(\mathbb{A}, \mathbb{B})$ by doing nothing
- What remains: Equivalence of $\operatorname{PVCSP}(\mathbb{A}, \mathbb{B})$ and $\operatorname{PVMC}_{N}(\mathbb{A}, \mathbb{B})$ for suitably big $N$


## $\mathrm{PVMC}_{N}(\mathbb{C}, \mathbb{D}) \rightarrow \mathrm{PVMC}_{N}(\mathbb{A}, \mathbb{B})$ by doing nothing

- Given $\phi: \operatorname{wPol}(\mathbb{A}, \mathbb{B}) \rightarrow \mathrm{wPol}(\mathbb{C}, \mathbb{D})$
- "Yes" instances go to "Yes" instances always
- "Yes" instance: $\exists \xi:[n] \rightarrow[N]$ such that $f_{i} \mapsto \pi_{\xi(i)}$ satisfies $\Sigma$ and we have $\sum_{i=1}^{n} \alpha_{i}(\xi(i)) \leq q$.
- "No" instances of $\mathrm{PVMC}_{N}(\mathbb{C}, \mathbb{D})$ go to "No" instances of $\mathrm{PVMC}_{N}(\mathbb{A}, \mathbb{B})$ thanks to $\phi$
- If $\exists \xi:\left\{f_{1}, \ldots, f_{n}\right\} \rightarrow$ wPol $^{+}(\mathbb{A}, \mathbb{B})$ satisfying $\Sigma$ such that $\sum_{i=1}^{n} \beta_{i}\left(\xi\left(f_{i}\right)\right) \leq q$, then $\phi \circ \xi$ works for $\mathrm{PVMC}_{N}(\mathbb{C}, \mathbb{D})$


## Reduction from PVCSP $(\mathbb{C}, \mathbb{D})$ to $\mathrm{PVMC}_{N}(\mathbb{C}, \mathbb{D})$

- Idea from BBOK
- Example with $C=\{0,1\}$

$$
R\binom{x}{y}+S(y) \leq 42
$$

- Enumerate support sets of relations of $\mathbb{C}$
- $R^{\mathbb{C}}<\infty$ for

$$
\binom{1}{1},\binom{1}{0},\binom{0}{1}
$$

and $S^{\mathbb{C}}(0)<\infty$

- Then $\Sigma$ becomes like in BBOK

$$
\begin{aligned}
& f_{x}\left(x_{0}, x_{1}\right) \approx f_{R}\left(x_{1}, x_{1}, x_{0}\right) \\
& f_{y}\left(x_{0}, x_{1}\right) \approx f_{R}\left(x_{1}, x_{0}, x_{1}\right) \\
& f_{y}\left(x_{0}, x_{1}\right) \approx f_{S}\left(x_{0}\right)
\end{aligned}
$$

## Reduction from $\operatorname{PVCSP}(\mathbb{C}, \mathbb{D})$ to $\operatorname{PVMC}_{N}(\mathbb{C}, \mathbb{D})$, cont.

- $R^{\mathbb{C}}<\infty$ for

$$
\binom{1}{1},\binom{1}{0},\binom{0}{1}
$$

and $S^{\mathbb{C}}(0)<\infty$

- $\alpha_{R}(i)$ cost of $R^{\mathbb{C}}$ of $i$-th tuple
- $\beta_{R}(h)=R^{\mathbb{D}}\left(h\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)\right)$
- $\left(\alpha_{S}, \beta_{S}\right)$ similarly
- $\left(\alpha_{x}, \beta_{x}\right),\left(\alpha_{y}, \beta_{y}\right)$ zero everywhere
- Exercise: This is compatible with wPol $(\mathbb{C}, \mathbb{D})$
- Cheap solution of $\operatorname{PVCSP}(\mathbb{C}, \mathbb{D})$ in $\mathbb{C} \rightarrow$ a cheap solution of $\mathrm{PVMC}_{N}(\mathbb{C}, \mathbb{D})$ in projections
- No cheap solution of $\operatorname{PVCSP}(\mathbb{C}, \mathbb{D})$ in $\mathbb{D} \rightarrow$ no cheap solution of $\mathrm{PVMC}_{N}(\mathbb{C}, \mathbb{D})$ in $\mathrm{Pol}^{+}(\mathbb{C}, \mathbb{D})$


## Reduction from $\operatorname{PVMC}_{N}(\mathbb{A}, \mathbb{B})$ to $\operatorname{PVCSP}(\mathbb{A}, \mathbb{B})$

- Works for any $N$
- Given $\left(\alpha_{i}, \beta_{i}\right)$ compatible with wPol ${ }_{i}(\mathbb{A}, \mathbb{B})$
- Need to show that we can simulate $\left(\alpha_{i}, \beta_{i}\right)$ using a PVCSP instance
- Needs: We can emulate each $\left(\alpha_{i}, \beta_{i}\right)$ by a pair of relations
- Farkas' lemma is handy here
- Then satisfying solution $\Rightarrow$ PVMC has solution in projections
- No cheap map to $\mathbb{B} \Rightarrow$ no cheap solution in $\operatorname{Pol}^{+}(\mathbb{A}, \mathbb{B})$


## Example

- Take the PVMC example from before
- Since $(\alpha, \beta)$ are compatible with $(\mathbb{A}, \mathbb{B})$, Farkas' lemma gives us, for example, that

$$
\begin{aligned}
& \alpha\left(\pi_{1}\right) \geq 3 R^{\mathbb{A}}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+7 R^{\mathbb{A}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& \alpha\left(\pi_{2}\right) \geq 3 R^{\mathbb{A}}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+7 R^{\mathbb{A}}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& \beta(h) \leq 3 R^{\mathbb{B}}\left(h\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)\right)+7 R^{\mathbb{B}}\left(h\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right)\right)
\end{aligned}
$$

## Example, cont.

- Consider the PVCSP instance

$$
3 \cdot R\left(x_{10}, x_{01}, x_{00}\right)+7 R\left(x_{10}, x_{10}, x_{11}\right) \leq 1 / 2
$$

- Under the rug: $A$ constraint that ensures that $\mathbb{B}$ we always have have $x_{i j}=h(i, j)$ for some $h \in \mathrm{wPol}_{2}^{+}(\mathbb{A}, \mathbb{B})$
- Cheap solution of $\mathrm{PVMC}_{N}(\mathbb{A}, \mathbb{B})$ in projections $\Rightarrow$ a cheap solution of $\operatorname{PVCSP}(\mathbb{A}, \mathbb{B})$ in $\mathbb{A}$
- No cheap solution of $\operatorname{PVMC}_{N}(\mathbb{A}, \mathbb{B})$ in $\operatorname{Pol}^{+}(\mathbb{A}, \mathbb{B}) \Rightarrow$ no cheap solution of $\operatorname{PVCSP}(\mathbb{A}, \mathbb{B})$ in $\mathbb{B}$
- Also under the rug: Representing equation system

$$
\begin{aligned}
& f(x, y) \approx g(y, x) \\
& f(y, x) \approx g(y, x)
\end{aligned}
$$

by gluing together some $x_{01}$ and $x_{10}$.

