The correct category for valued CSP

Alexandr Kazda

CU Boulder

February 4th 2021

Valued CSP

- Given $q \in \mathbb{Q}$. Is there a $\sigma: V \rightarrow D$ so that

$$
R_{1}\left(\sigma\left(v_{11}\right), \sigma\left(v_{12}\right), \ldots\right)+R_{2}\left(\sigma\left(v_{21}\right), \ldots\right)+\cdots+R_{k}\left(\sigma\left(v_{k 1}\right), \ldots\right) \leq q ?
$$

- Here $R_{i}: D^{n} \rightarrow \mathbb{Q} \cup\{\infty\}$
- Non-uniform VCSP: Fixed D and the possible cost functions R_{i}

VCSP vs. CSP

- If we only choose $R_{i}:: D^{n} \rightarrow \nvdash \cup\{\infty\}$, we get CSP
- Inequality

$$
R_{1}\left(\sigma\left(v_{11}\right), \sigma\left(v_{12}\right), \ldots\right)+R_{2}\left(\sigma\left(v_{21}\right), \ldots\right)+\cdots+R_{k}\left(\sigma\left(v_{k 1}\right), \ldots\right) \leq 0
$$

becomes

$$
\bigvee_{i=1}^{k}\left(\sigma\left(v_{i 1}\right), \sigma\left(v_{i 2}\right), \ldots\right) \in \operatorname{dom} R_{i}
$$

Isn't this done?

- Complexity dichotomy (in P vs. NP-hard) proved by Kolmogorov, Krokhin, Rolínek in 2015
- But we can make the math more beautiful...

Weighted polymorphisms

- $\mathbb{A}=(A ; R)$ a valued relational structure
- $\psi: A^{n} \rightarrow A$ is weighted sum of operations
- Compatibility condition for $n=2$: For all \bar{x}_{1}, \bar{x}_{2} in A^{2}

$$
\alpha R\left(\bar{x}_{1}\right)+(1-\alpha) R\left(\bar{x}_{2}\right) \geq \sum_{h: A^{2} \rightarrow A} \psi(h) R\left(h\left(\bar{x}_{1}, \bar{x}_{2}\right)\right)
$$

- Example: Submodularity

$$
1 / 2 \cdot R(\bar{x})+1 / 2 \cdot R(\bar{y}) \geq 1 / 2 \cdot(R(\bar{x} \wedge \bar{y}))+1 / 2 \cdot(R(\bar{x} \vee \bar{y}))
$$

- Kolmogorov, Krokhin, Rolínek: If \mathbb{A} is a rigid core then $\operatorname{VCSP}(\mathbb{A})$ is in P if \mathbb{A} has a cyclic fractional polymorphism; $\operatorname{VCSP}(\mathbb{A})$ is NP-hard else.

Category theory

- In (P)CSP the symmetries were given by all morphisms $\mathbb{A}^{n} \rightarrow \mathbb{B}$
- We can define $\operatorname{Pol}(\mathbb{A}, \mathbb{B})=\operatorname{Hom}\left(\mathbb{A}^{n}, \mathbb{B}\right)$ in any category with powers
- This does not ensure CSP-style reductions, but we can hope...
- If we have products, we can try to construct $\mathbb{B}^{\mathbb{C}}$ as right adjoint functor to \times :

$$
\operatorname{Hom}(\mathbb{A} \times \mathbb{C}, \mathbb{B}) \simeq \operatorname{Hom}\left(\mathbb{A}, \mathbb{B}^{\mathbb{C}}\right)
$$

- In Set, B^{C} is just the set of all mappings $C \rightarrow B$; the isomorphism goes by $f \mapsto(a \mapsto(c \mapsto f(a, c)))$
- $\mathbb{B}^{\mathbb{C}}$ is useful, e.g. in graph theory

Naive VCSP category

- Why not just take all valued relational structures of a given signature?
- Morphisms, say mappings that do not increase "cost"
- Eg. $\mathbb{A}=\left(A ; R^{\mathbb{A}}\right)$ where $R^{\mathbb{A}}: A^{2} \rightarrow \mathbb{Q} \cup\{\infty\}$?
- Say $h: A \rightarrow B$ s.t. for all \bar{a}

$$
R^{\mathbb{A}}(\bar{a}) \geq R^{\mathbb{B}}(h(\bar{a}))
$$

- Products are problematic...

Defective products

- Natural candidate for \mathbb{A}^{2} has universe A^{2}, but what about $R^{\mathbb{A}^{2}}$?
- We want projections to be homomorphisms $\mathbb{A}^{2} \rightarrow \mathbb{A}$, so $\forall a_{i j}$

$$
R^{\mathbb{A}^{2}}\left(\left(a_{11}, a_{12}\right),\left(a_{21}, a_{22}\right)\right) \geq R^{\mathbb{A}}\left(a_{11}, a_{21}\right), R^{\mathbb{A}}\left(a_{12}, a_{22}\right)
$$

- Maybe

$$
R^{\mathbb{A}^{2}}\left(\left(a_{11}, a_{12}\right),\left(a_{21}, a_{22}\right)\right)=\max \left(R^{\mathbb{A}}\left(a_{11}, a_{21}\right), R^{\mathbb{A}}\left(a_{12}, a_{22}\right)\right) ?
$$

- We get projections, but $\mathbb{A}^{2} \rightarrow \mathbb{A}$ is not $\operatorname{Pol}_{2}(\mathbb{A})$
- Moreover: VCSP is not a homomorphism problem here

More correct VCSP category

- Objects: Convex combinations of valued relational structures
- Morphisms: Distributions over mappings $\phi: \mathfrak{A} \rightarrow \mathfrak{B}$ such that for each structure $\mathbb{B} \in \mathfrak{B}$ there is a relational structure $\mathbb{A} \in \mathfrak{A}$ such that "on average" $\phi: \mathbb{A} \rightarrow \mathbb{B}$ is a homomorphism

$$
R^{\mathbb{A}}(\bar{x}) \geq \sum_{h: A \rightarrow B} \phi(h) R^{\mathbb{B}}(h(\bar{x}))
$$

- $\operatorname{Hom}\left(\{\mathbb{A}\}^{n},\{\mathbb{A}\}\right)$ are weighted polymorphisms

Pesky ∞

- We want to use convex geometry and ∞ gets in the way
- Instead of $R^{\mathbb{A}}(\bar{a})=\infty$, make it so that there are $\mathbb{A} \in \mathfrak{A}$ with $R^{\mathbb{A}}(\bar{a})$ arbitrarily big
- Example: Instead of

$$
R(x, y)= \begin{cases}0 & \text { if } x \neq y \\ \infty & \text { else }\end{cases}
$$

take $\mathfrak{A}=\left\{\left(A ; R^{(s)}\right): s \in \mathbb{Q} \cap[0, \infty)\right\}$ where

$$
R^{(s)}(x, y)= \begin{cases}0 & \text { if } x \neq y \\ s & \text { else }\end{cases}
$$

- Now mappings $\mathfrak{A} \rightarrow \mathfrak{B}$ don't have to worry about $(x, x) \ldots$
- and mappings $\mathfrak{B} \rightarrow \mathfrak{A}$ can't send finite cost pairs to (x, x)

CSP becomes a homomorphism problem

- Let $\mathfrak{B}=\{\mathbb{B}\}$
- Suppose \mathfrak{A} contains all structures on A with $R^{\mathbb{A}}$ such that

$$
\sum_{\bar{a} \in X} R^{\mathbb{A}}(\bar{a}) \leq q
$$

- Then $\phi: \mathfrak{A} \rightarrow \mathfrak{B}$ iff

$$
\begin{array}{rlr}
R^{\mathbb{A}}(\bar{a}) & \geq R^{\mathbb{B}}(\phi(\bar{a})) \quad \text { for all } \bar{a} \in A^{n} \\
\sum_{\bar{a} \in X} R^{\mathbb{A}}(\bar{a}) & \leq q &
\end{array}
$$

- This is equivalent to

$$
\sum_{\bar{a} \in X} R^{\mathbb{B}}(\phi(\bar{a})) \leq q
$$

a $\operatorname{VCSP}(\mathbb{B})$ instance

Homomorphism problem \leq VCSP ???

- The reduction of homomorphism to VCSP works also when \mathfrak{A} consists of all $\left(A, R^{\mathbb{A}}\right)$ satisfying

$$
\sum_{\bar{a} \in X} \alpha(\bar{a}) R^{\mathbb{A}}(\bar{a}) \leq q
$$

where $\alpha(\bar{a}) \in[0, \infty) \cap \mathbb{Q}$

- By taking copies, we can get rid of the $\alpha(\bar{a})$'s and get a $\operatorname{VCSP}(\mathbb{B})$ instance like before
- Now we just need to:
(1) Deal with negative coefficients
(2) Deal with more inequalities
(3) Deal with homomorphisms as weighted combinations of maps

Example of a power

- Take $\mathfrak{A}=\left\{\mathbb{A}^{(s)}: s \in \mathbb{Q} \cap[0, \infty)\right\}$ where $\mathbb{A}^{(s)}=\left(\{0,1\} ; R^{\mathbb{A}, s}\right)$ with

\bar{a}	00	01	10	11
$R^{\mathbb{A}, \mathbf{s}}$	0	s	1	1

- How to define \mathfrak{A}^{2} ? Pick $s_{1}, s_{2} \in \mathbb{Q} \cap[0, \infty)$ and $\alpha \in \mathbb{Q} \cap[0,1]$. Let

$$
R^{\left(s_{1}, s_{2}, \alpha\right)}\left(\left(a_{11}, a_{12}\right),\left(a_{21}, a_{22}\right)\right)=\alpha R^{\mathbb{A}, s_{1}}\left(a_{11}, a_{21}\right)+(1-\alpha) R^{\mathbb{A}, s_{2}}\left(a_{12}, a_{22}\right)
$$

- A few possible values:

$a_{11} a_{21} ; a_{12} a_{22}$	$00 ; 00$	$00 ; 01$	$00 ; 10$	$10 ; 11$	\ldots
$R^{\left(s_{1}, s_{2}, \alpha\right)}$	0	$(1-\alpha) s_{2}$	αs_{1}	$\alpha+(1-\alpha) s_{2}$	\ldots

- A homomorphism $\mathfrak{A}^{2} \rightarrow \mathfrak{A}$ can pick its favorite values s_{1}, s_{2} (bigger is better) and α

Example, cont.

\bar{a}	00	01	10	11
$R^{\mathbb{A}, s}$	0	s	1	1

- Effectively anything with 0?; 1? or ?0; ?1 has infinite value
- The table of finite values

$a_{11} a_{21} ; a_{12} a_{22}$	$00 ; 00$	$10 ; 00$	$10 ; 01$	$01 ; 00$	$01 ; 01$
$R^{\left(s_{1}, s_{2}, \alpha\right)}$	0	α	α	$1-\alpha$	$1-\alpha$

$a_{11} a_{21} ; a_{12} a_{22}$	$11 ; 00$	$11 ; 01$	$11 ; 10$	$11 ; 11$
$R^{\left(s_{1}, s_{2}, \alpha\right)}$	1	1	1	1

- $0.5 \wedge+0.5 \vee$ is $\mathfrak{A}^{2} \rightarrow \mathfrak{A}$; choose $\alpha=1 / 2$

$$
a_{1} a_{2} \mapsto 0.5 a_{1} \wedge a_{2}+0.5 a_{1} \vee a_{2}
$$

- Example

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \mapsto 0.5\binom{0}{0}+0.5\binom{1}{1}
$$

How to make our category more correct

- Sad fact: Our category has no terminal object
- Assume \mathfrak{T} is a terminal object
- Say we have just one binary R in signature
- For $s \in \mathbb{Q}$ define $\mathfrak{A}^{(s)}=\left\{\left(\{0\} ; R^{(s)}\right)\right\}$ let $R^{(s)}(0,0)=s$
- We should have $\mathfrak{A}^{(s)} \rightarrow \mathfrak{T}$ for all $s \in \mathbb{Q}$
- Support set of T is finite; there exist only $|T|$ maps $\{0\} \rightarrow T$
- There is a map $h:\{0\} \rightarrow T$ that gets weight $\geq 1 /|T|$ for arbitrarily small s
- Then $s \geq R^{\mathbb{T}}(h(0), h(0))$ for any $\mathbb{T} \in \mathfrak{T}$ and $s \rightarrow-\infty$

Powers $\mathfrak{B}^{\mathfrak{C}}$

- Is there right adjoint to $\operatorname{Hom}(-\times \mathfrak{C},-)$?
- I suspect not :(

