The correct category for valued CSP

Alexandr Kazda

CU Boulder

February 4th 2021

Alexandr Kazda (CU Boulder)

The category for VCSP

• Given $q \in \mathbb{Q}$. Is there a $\sigma: V \to D$ so that $R_1(\sigma(v_{11}), \sigma(v_{12}), \dots) + R_2(\sigma(v_{21}), \dots) + \dots + R_k(\sigma(v_{k1}), \dots) \leq q$?

- Here $R_i: D^n \to \mathbb{Q} \cup \{\infty\}$
- Non-uniform VCSP: Fixed D and the possible cost functions R_i

- If we only choose R_i : $: D^n \to \not\vdash \cup \{\infty\}$, we get CSP
- Inequality

$$R_1(\sigma(v_{11}),\sigma(v_{12}),\ldots)+R_2(\sigma(v_{21}),\ldots)+\cdots+R_k(\sigma(v_{k1}),\ldots)\leq 0$$

becomes

$$\bigvee_{i=1}^k (\sigma(v_{i1}), \sigma(v_{i2}), \dots) \in \operatorname{dom} R_i$$

- Complexity dichotomy (in P vs. NP-hard) proved by Kolmogorov, Krokhin, Rolínek in 2015
- But we can make the math more beautiful...

Weighted polymorphisms

- $\mathbb{A} = (A; R)$ a valued relational structure
- $\psi \colon A^n \to A$ is weighted sum of operations
- Compatibility condition for n = 2: For all $\overline{x}_1, \overline{x}_2$ in A^2

$$\alpha R(\overline{x}_1) + (1 - \alpha) R(\overline{x}_2) \geq \sum_{h: A^2 \to A} \psi(h) R(h(\overline{x}_1, \overline{x}_2))$$

• Example: Submodularity

$$1/2 \cdot \textit{R}(\overline{x}) + 1/2 \cdot \textit{R}(\overline{y}) \geq 1/2 \cdot (\textit{R}(\overline{x} \land \overline{y})) + 1/2 \cdot (\textit{R}(\overline{x} \lor \overline{y}))$$

 Kolmogorov, Krokhin, Rolínek: If A is a rigid core then VCSP(A) is in P if A has a cyclic fractional polymorphism; VCSP(A) is NP-hard else.

- In (P)CSP the symmetries were given by all morphisms $\mathbb{A}^n \to \mathbb{B}$
- We can define $Pol(\mathbb{A}, \mathbb{B}) = Hom(\mathbb{A}^n, \mathbb{B})$ in any category with powers
- This does not ensure CSP-style reductions, but we can hope...
- If we have products, we can try to construct $\mathbb{B}^{\mathbb{C}}$ as right adjoint functor to $\times :$

$$\mathsf{Hom}(\mathbb{A} imes \mathbb{C}, \mathbb{B}) \simeq \mathsf{Hom}(\mathbb{A}, \mathbb{B}^{\mathbb{C}})$$

- In Set, B^C is just the set of all mappings $C \to B$; the isomorphism goes by $f \mapsto (a \mapsto (c \mapsto f(a, c)))$
- $\mathbb{B}^{\mathbb{C}}$ is useful, e.g. in graph theory

- Why not just take all valued relational structures of a given signature?
- Morphisms, say mappings that do not increase "cost"
- Eg. $\mathbb{A} = (A; R^{\mathbb{A}})$ where $R^{\mathbb{A}} \colon A^2 \to \mathbb{Q} \cup \{\infty\}$?
- Say $h: A \rightarrow B$ s.t. for all \overline{a}

$$R^{\mathbb{A}}(\overline{a}) \geq R^{\mathbb{B}}(h(\overline{a}))$$

Products are problematic...

- Natural candidate for \mathbb{A}^2 has universe A^2 , but what about $\mathbb{R}^{\mathbb{A}^2}$?
- We want projections to be homomorphisms $\mathbb{A}^2 \to \mathbb{A}$, so $\forall a_{ij}$

$$R^{\mathbb{A}^2}((a_{11},a_{12}),(a_{21},a_{22}))\geq R^{\mathbb{A}}(a_{11},a_{21}),R^{\mathbb{A}}(a_{12},a_{22})$$

Maybe

$$R^{\mathbb{A}^2}((a_{11}, a_{12}), (a_{21}, a_{22})) = \max(R^{\mathbb{A}}(a_{11}, a_{21}), R^{\mathbb{A}}(a_{12}, a_{22}))?$$

- \bullet We get projections, but $\mathbb{A}^2 \to \mathbb{A}$ is not $\mathsf{Pol}_2(\mathbb{A})$
- Moreover: VCSP is not a homomorphism problem here

- Objects: Convex combinations of valued relational structures
- Morphisms: Distributions over mappings φ : 𝔅 → 𝔅 such that for each structure 𝔅 ∈ 𝔅 there is a relational structure 𝔅 ∈ 𝔅 such that "on average" φ: 𝔅 → 𝔅 is a homomorphism

$$R^{\mathbb{A}}(\overline{x}) \geq \sum_{h: A \to B} \phi(h) R^{\mathbb{B}}(h(\overline{x}))$$

• Hom({A}ⁿ, {A}) are weighted polymorphisms

Pesky ∞

- ullet We want to use convex geometry and ∞ gets in the way
- Instead of $R^{\mathbb{A}}(\overline{a}) = \infty$, make it so that there are $\mathbb{A} \in \mathfrak{A}$ with $R^{\mathbb{A}}(\overline{a})$ arbitrarily big
- Example: Instead of

$$R(x,y) = \begin{cases} 0 & \text{if } x \neq y \\ \infty & \text{else,} \end{cases}$$

take $\mathfrak{A} = \{(A; R^{(s)}) \colon s \in \mathbb{Q} \cap [0, \infty)\}$ where

$$R^{(s)}(x,y) = \begin{cases} 0 & \text{if } x \neq y \\ s & \text{else} \end{cases}$$

- Now mappings $\mathfrak{A} o \mathfrak{B}$ don't have to worry about $(x, x) \dots$
- ullet ... and mappings $\mathfrak{B}
 ightarrow \mathfrak{A}$ can't send finite cost pairs to (x,x)

CSP becomes a homomorphism problem

• Let $\mathfrak{B} = \{\mathbb{B}\}$

• Suppose \mathfrak{A} contains all structures on A with $R^{\mathbb{A}}$ such that

$$\sum_{\overline{a}\in X} R^{\mathbb{A}}(\overline{a}) \leq q$$

• Then $\phi: \mathfrak{A} \to \mathfrak{B}$ iff

$$R^{\mathbb{A}}(\overline{a}) \geq R^{\mathbb{B}}(\phi(\overline{a}))$$
 for all $\overline{a} \in A^n$
 $\sum_{\overline{a} \in X} R^{\mathbb{A}}(\overline{a}) \leq q$

• This is equivalent to

$$\sum_{\overline{a}\in X} R^{\mathbb{B}}(\phi(\overline{a})) \leq q,$$

a VCSP(\mathbb{B}) instance

Alexandr Kazda (CU Boulder)

Homomorphism problem \leq VCSP ???

 The reduction of homomorphism to VCSP works also when 𝔅 consists of all (A, R^A) satisfying

$$\sum_{\overline{a}\in X} \alpha(\overline{a}) R^{\mathbb{A}}(\overline{a}) \leq q$$

where $\alpha(\overline{a}) \in [0,\infty) \cap \mathbb{Q}$

- By taking copies, we can get rid of the α(ā)'s and get a VCSP(B) instance like before
- Now we just need to:
 - Deal with negative coefficients
 - 2 Deal with more inequalities
 - 3 Deal with homomorphisms as weighted combinations of maps

Example of a power

- Take $\mathfrak{A} = \{\mathbb{A}^{(s)} : s \in \mathbb{Q} \cap [0, \infty)\}$ where $\mathbb{A}^{(s)} = (\{0, 1\}; R^{\mathbb{A}, s})$ with $\frac{\overline{a} \quad 00 \quad 01 \quad 10 \quad 11}{R^{\mathbb{A}, s} \quad 0 \quad s \quad 1 \quad 1}$
- How to define \mathfrak{A}^2 ? Pick $s_1, s_2 \in \mathbb{Q} \cap [0, \infty)$ and $\alpha \in \mathbb{Q} \cap [0, 1]$. Let $R^{(s_1, s_2, \alpha)}((a_{11}, a_{12}), (a_{21}, a_{22})) = \alpha R^{\mathbb{A}, s_1}(a_{11}, a_{21}) + (1-\alpha) R^{\mathbb{A}, s_2}(a_{12}, a_{22})$
- A few possible values:

 $\begin{array}{c|ccccc} a_{11}a_{21}; a_{12}a_{22} & 00;00 & 00;01 & 00;10 & 10;11 & \dots \\ \hline R^{(s_1,s_2,\alpha)} & 0 & (1-\alpha)s_2 & \alpha s_1 & \alpha + (1-\alpha)s_2 & \dots \end{array}$

• A homomorphism $\mathfrak{A}^2 \to \mathfrak{A}$ can pick its favorite values s_1, s_2 (bigger is better) and α

Alexandr Kazda (CU Boulder)

Example, cont.

ā	00	01	10	11
R ^{A,s}	0	5	1	1

- Effectively anything with 0?; 1? or ?0; ?1 has infinite value
- The table of finite values 10;00 10:01 01:00 01:01 00:00 *a*₁₁*a*₂₁; *a*₁₂*a*₂₂ $R^{(s_1,s_2,\alpha)}$ 0 $1-\alpha \mid 1-\alpha$ α α 11:01 11:10 11:11 11:00a11 a21; a12 a22 $R^{(s_1,s_2,\alpha)}$ 1 1 1 1 • $0.5 \wedge +0.5 \vee \text{ is } \mathfrak{A}^2 \to \mathfrak{A}$; choose $\alpha = 1/2$

 $a_1a_2\mapsto 0.5a_1\wedge a_2+0.5a_1\vee a_2$

Example

$$\begin{pmatrix}1 & 0\\ 0 & 1\end{pmatrix}\mapsto 0.5\begin{pmatrix}0\\ 0\end{pmatrix}+0.5\begin{pmatrix}1\\ 1\end{pmatrix}$$

- Sad fact: Our category has no terminal object
- Assume \mathfrak{T} is a terminal object
- Say we have just one binary R in signature
- For $s \in \mathbb{Q}$ define $\mathfrak{A}^{(s)} = \{(\{0\}; R^{(s)})\}$ let $R^{(s)}(0,0) = s$
- We should have $\mathfrak{A}^{(s)} o \mathfrak{T}$ for all $s \in \mathbb{Q}$
- Support set of T is finite; there exist only |T| maps $\{0\} \rightarrow T$
- There is a map $h \colon \{0\} \to T$ that gets weight $\geq 1/|T|$ for arbitrarily small s
- Then $s \geq R^{\mathbb{T}}(h(0), h(0))$ for any $\mathbb{T} \in \mathfrak{T}$ and $s \to -\infty$

- Is there right adjoint to $\mathsf{Hom}(-\times \mathfrak{C},-)?$
- I suspect not :(